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Abstract: As the prominence of artificial intelligence (AI) has grown, companies are finding more ways to incorporate it 
into previously existing technological infrastructures to optimize their performance. Structured Query Language (SQL) is 
a popular way to store and retrieve data, and recently has been combined with AI search algorithms to speed up these 
processes. However, these successes make SQL vulnerable to attacks where malware is injected to gain access, 
modify, or even delete restricted data, which is also known as SQL Injection Attacks (SQLIA). This paper presents a 
detection approach that based on language processors, and shifts the focus of defenses against SQLIA from static 
pattern matching to recognizing the underlying linguistic and structural features of SQL injection attacks. Unlike 
traditional sanitization, this newly proposed defense will combine tokenization and vectorization with a language 
processor to detect malicious patterns and flag them. After running our proposed defense on a large public dataset, we 
received a precision score of 0.789, a recall score of 0.97, and an F1 score of 0.87 in terms of detection performance, 
which demonstrates the effectiveness of our defense method.  
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1. INTRODUCTION 

Relational databases are widely used across 
industries due to their scalability and ability to support 
complex backend systems [1]. They rely on Structured 
Query Language (SQL) to efficiently manage, query, 
and update stored information. SQL databases have 
become foundational to modern data management due 
to their robustness and performance [2]. However, this 
central role also makes them prime targets for cyber 
attacks, threatening the confidentiality, integrity, and 
availability of sensitive data. These attacks now 
intersect with broader cybersecurity and legal 
frameworks, as SQL-based systems often store 
regulated data and therefore require defensible, 
auditable detection mechanisms that satisfy both 
technical and compliance standards. Among these, 
SQL injection attacks (SQLIAs) remain one of the most 
prevalent and dangerous, allowing adversaries to insert 
malicious code into user inputs in order to manipulate 
or extract database content [3]. 

SQLIAs are consistently ranked among the top five 
most severe software vulnerabilities by OWASP [4]. 
Their threats are amplified by the wide adoption of 
machine learning (ML) techniques, as many machine 
learning-driven systems either store critical data in SQL 
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databases or utilize SQL to optimize their functionality. 
ML can enhance database performance through 
predictive query optimization, automatic indexing, and 
workload management [5]. However, its integration 
without proper processors introduces new 
vulnerabilities by expanding attack surfaces and 
enabling adversaries to automate large-scale SQL 
injection attempts [6]. This combination highlights the 
need for defenses that improve detection accuracy 
while also providing forensic traceability and legal 
defensibility. Stakeholders increasingly require 
transparent explanations for how and why automated 
systems flag particular queries [6]. Introducing the 
language processor domain to a more matching-based 
algorithm can protect against these attacks. 

Traditional mitigation techniques rely heavily on 
input sanitization, which attempts to filter out known 
malicious query patterns [7]. While useful, these 
approaches are weak: many SQL injection and cross-
site scripting (XSS) attacks bypass sanitization by 
slightly modifying known payloads. Furthermore, 
sanitization mechanisms that depend on regular 
expressions are themselves susceptible to regex-
based denial-of-service (ReDoS) attacks, which can 
exhaust system resources [7]. Preexisting algorithms 
that use static methods often require more manual 
intervention and are not aligned with real-time data 
needs [5]. 

Some other research endeavors have incorporated 
advanced practices into their SQL defense. However, 
the usage of tools, such as decision trees, can be 
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vulnerable to the actual attack language if it is looking 
to elevate privilege [6]. Others use machine learning to 
compare distances between run-time and developer-
intended queries to estimate if something is benign or 
not [1, 8]. Although utilizing ML for distance measuring 
can create a large overhead that a language processor 
would not [1]. Some train ML algorithms to work with 
web application firewalls, but the attacks that run 
against them by mutating an input to a semantically 
equivalent input, are in a different form [9]. Yet most 
ML-based approaches provide limited insight into which 
specific linguistic or structural features triggered a 
detection, reducing their usefulness in digital forensic 
reconstruction after an incident. 

In this paper, we present a linguistic approach that 
shifts the focus from static pattern matching to 
recognizing the underlying linguistic and structural 
features of SQL injection attempts. Our research 
improves the preexisting input sanitization technology 
with the power of language processing capabilities. 
Finally, we integrate these components into a prototype 
attack detector powered by language processing and 
MySQL. The performance of this system is evaluated 
through accuracy metrics, offering insights into the 
viability of defenses against SQL injection that extend 
beyond preexisting matching-based methods. 

Our new defensive system would most efficiently 
defend against tautology attacks, errors, and Boolean-
based attacks, and special character attacks. Since the 
foundation of our defense is focused on detecting 
human language versus attack language, it defends 
input with out of the ordinary characters the best. It was 
designed this way since a majority of SQL injection 
attacks are successful by consistently running 
characters against the database until they find a 
combination of attack characters not sanitized by the 
preexisting defense. The implementation of character 
n-grams and not just static pattern-matching, 
simultaneously addresses differences due to spelling 
variation, morphology, and word choice [10]. Because 
the model uses TF-IDF character n-grams, it inherits 
the known vulnerability of linear text classifiers to 
adversarial token-level mutations. Although out-of-band 
attacks that work through network protocols, like DNS 
or HTTP, are important, the previously mentioned 
attack categories are much more common and can be 
ran by even amateur hackers. By targeting the types of 
attacks that make up the majority of SQLIAs, our 
defense found a higher success rate. To situate our 
contribution within real-world attack conditions, we 
develop a threat model that outlines the attacker’s 

capabilities, system assumptions, and plausible bypass 
strategies. This model guides both the design and 
evaluation of our defense. 

The main contributions of the paper are outlined as 
follows:  

•  We implemented a malicious SQL injection 
attack detector based on linguistics.  

•  We incorporated vectorization, string 
tokenization, a heuristic fallback, and an adaptive 
threshold to improve our defense from the levels 
of a traditional sanitization.  

•  We estimated a 97.82% decrease in approximate 
vulnerable websites after our defensive system 
was ran against their payloads, compared to the 
estimated percentage of vulnerable websites [3].  

•  We received a precision score of 0.789, a recall 
score of 0.97, and an F1 score of 0.87 for the 
successful detection of payloads of benign and 
malicious texts on a public dataset.  

2 LITERATURE REVIEW  

2.1. SQL Injection Attacks Background  

Specifically, SQL injection attacks have been a 
growing threat to relational databases because of the 
large reward of vulnerable information that hackers 
gain as a result of it. Not only do SQLIAs endanger 
protected data, but they can also compromise the 
underlying operating system on which the SQL server 
runs. Certain attacks that look to escalate privilege in 
order to access data can also use the newfound 
privilege to overrun and execute commands on the 
host operating system [6]. Such attacks can damage 
organizational reputations and cost thousands to 
millions of dollars in recovery and remediation efforts. 
The distrust that could stem from the public regarding 
SQLIAs is an important consequence. While many 
studies describe their severity, fewer address how 
modern AI-driven systems increase the attack surface 
by introducing new automated vectors that scale these 
attacks. As SQL systems become embedded within 
machine-learning enhanced workflows, the challenges 
of detecting subtle, mutated payloads grow more 
complex, especially in environments that require 
interpretable and verifiable security responses. 

In theory, the problem of SQLIAs could be resolved 
if every datagram were opened and analyzed within a 
network. However, most networks process such a large 
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quantity of data that this is close to impossible, leaving 
the chance of missed detection very high [4]. A 
common issue with many of the defense systems 
against injection attacks is the high rate of both false 
positives and false negatives. 

2.2. SQLIA Attack Strategies 

2.2.1. Attacks through Firewalls and Browsers 

One common strategy is to exploit HTTP/HTTPS 
pathways to bypass an application’s firewall, especially 
when the system lacks mechanisms that can detect 
structural changes in mutated or encoded inputs [6]. 
Another operates in a similar manner but looks to 
target the user side. By targeting direct user input or 
manipulating cookies stored in a browser, attackers 
can often access data more easily when client-side 
protections are weak [1]. 

2.2.2. Attacks Using Language 

Attackers frequently use tautology-based injections 
(e.g., appending “OR 1=1”) to force a query to always 
evaluate as true, sometimes pairing these with UNION 
statements to redirect where data is pulled from [6]. 
These techniques highlight how attackers rely on 
recognizable linguistic and structural patterns, yet 
many current ML systems fail to explain which parts of 
the input made it suspicious, limiting forensic 
traceability after an incident. Moreover, those can be 
joined with union query statements that say to retrieve 
something ‘FROM’ another location to retrieve from a 
separate query [11]. 

2.2.3. Attacks Using Errors and Output 

Other types of attacks include error-based and 
Boolean-based that look to gain knowledge of the 
structure of the query, instead of the data it contains, 
by receiving either errors or ‘true’ Booleans back on 
code related to movement [11]. In addition, piggy-back 
queried attacks and stored procedure injections use 
malicious code written by the hacker to modify or 
retrieve data from within the query. In piggybacked 
queries, attackers append malicious code (often 
separated by semicolons) to an existing query. In 
stored procedure injections, they replace legitimate 
procedures with maliciously crafted versions [11]. Such 
semantically equivalent but syntactically modified 
payloads expose weaknesses in models that rely solely 
on statistical similarity rather than structural linguistic 
features. 

 

2.3. SQLIA Defensive Strategies 

2.3.1. Defense Using Traffic Inspection 

The defensive side of these injection attacks looks 
to catch the attack attempt beforehand rather than fix it 
when it is already inside the SQL database. One 
method is similar to the ideal situation mentioned in 
Section 2.1 where deep packet inspection methods of 
flow monitoring and behavioral traffic analysis are used 
to detect abnormal patterns or sudden spikes in 
datagram communication [12]. This strategy is also 
seen used in conjunction with machine learning 
algorithms that can be trained to process large 
quantities of network data that would be difficult to 
process solely within the SQL. 

2.3.2. Defense Comparing Previous Algorithms 

Hybrid approaches combine machine learning with 
SQL-specific features, such as tree-based 
representations or keyword mining, to reduce false 
positives. While these approaches can improve 
detection accuracy, they inherit two major limitations: 
they are highly sensitive to adversarially mutated 
payloads, and they generally lack the ability to be 
verified, making it difficult for analysts to determine 
which part of the input contributed to a malicious 
classification [13]. More advanced machine learning 
methods similar to those have been developed to 
compare data inside the query. 

2.3.3 Defense Using Query Comparisons 

More dynamic systems, such as the CANDID 
model, compare developer-intended queries against 
user-supplied ones to detect inconsistencies [1]. 
Although these systems offer an improvement over 
static filters, they struggle with layered input structures 
and do not provide fine-grained explanations about why 
the queries differ. As a result, they lack the forensic 
traceability necessary for understanding or 
reconstructing an attack. Moreover, this approach 
struggles with layered input structures, such as loops, 
which are difficult to analyze dynamically. Following the 
idea of monitoring the user side, some SQL’s use an 
ontology approach that cross checks the semantics of 
the user side to see how well it matches with true 
human languages versus malicious code [1]. These 
systems also tend to be brittle against adversarial input 
mutations, where attackers slightly alter syntax or 
encoding to evade ML classifiers. 
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2.4. Machine Learning Techniques used in SQLIA 

The machine learning aspect has become more 
ingrained on both the defensive and attacking sides of 
SQLs. Recent attack developments have found that 
automated testing techniques are able to bypass web 
application firewalls when they match up with the 
previously stored payloads in a database [6]. This 
proves the threat of the "insider", someone who has 
access to the inner workings of a software, who can 
train a machine learning model from the inside to 
create holes in input boxes for the outside attackers. 
However, most ML-based defenses rely on opaque 
models where the decision-making process is not 
transparent, limiting their usefulness in security settings 
that require explainability and ability to be verified. 
Furthermore, adversarial mutation tools can generate 
payloads that bypass these models by altering syntax 
while preserving malicious intent. On the defensive 
side, decision trees and long short term memory 
(LSTM) are currently very popular [14]. However, the 
lack of ability to interpret in deep ML models makes 
them unsuitable for security environments that require 
transparent and verifiable detection logic. The recurrent 
neural networks that LSTMs operate as a part of, 
however, can not adapt as quickly as attack language 
is adapting- leaving further vulnerabilities. 

In terms of the rise of SQLIAs, machine learning is 
being used as an augmentation tool to preexisting 
algorithms, such as data processing in deep data 
mining mentioned previously. In certain cases, it was 
found that the addition of AI into traditional algorithms 
had a yield of up to a 40% reduction in query execution 
time and a 25% increase in throughput for indexing 
strategies that change dynamically with the query [11]. 
Machine learning-enhanced algorithms not only 
process more data in less time but also adapt more 
effectively to evolving user inputs. 

Language processing techniques offer an 
opportunity to address the shortcomings of existing ML 
approaches by focusing on structural and behavioral 
characteristics of input rather than surface-level tokens 
alone [15]. Because NLP-based detection can highlight 
which n-grams or linguistic patterns contributed to a 
classification, it naturally improves explainability and 
forensic traceability. This ability to interpret is one of 
the motivations behind our proposed approach, which 
seeks not only to detect attacks but to identify the 
specific linguistic patterns that make them malicious. 
Furthermore, its in-house style of processing eliminates 

the need for outside processes, which henceforth 
eliminates the need for a whole new set of resources, 
time allocation for tune-ups, and vulnerability patches. 
Its dynamic functionality enables real-time analysis 
while reducing data movement and associated latency 
[2]. 

Beyond technical vulnerability, SQL injection and 
XSS attacks also raise legal and forensic challenges. 
Effective detection systems must support auditability 
and maintain a clear chain of custody for logged 
events, since these logs may later be used as evidence 
in breach investigations. Studies in digital forensics 
emphasize that ML-based detectors must produce 
interpretable outputs to ensure legal admissibility and 
to verify how a detection decision was made [16]. 
These requirements highlight the need for approaches 
that prioritize transparency and traceable linguistic 
patterns rather than opaque model predictions. 

Our proposed method that incorporates language 
processing is necessary since it does not just sanitize 
based off of individual characters. Traditional 
sanitization defensive methods target each character at 
a time, which can ignore important attack patterns. 
Unlike the traditional, our defense trains the detector to 
recognize patterns, not just characters. It is these 
advanced patterns that are causing the SQLIA rates to 
be so high, so having our defense target these types of 
attacks will cause it to be the most efficient. 

3. DEFENDING AGAINST SQLIA BASED ON 
LINGUISTIC AND STRUCTURAL FEATURES 

3.1. Threat Model 

To clarify the scope of this work, we define the 
threat model guiding our evaluation and system design. 
We assume an adversary with the ability to submit 
arbitrary input to any publicly accessible field on a web 
application, including login pages, guestbook forms, 
and general text-based inputs. The attacker is capable 
of crafting both known and mutated SQL injection 
payloads, including tautology-based injections, UNION-
based data extraction, Boolean and error-based 
enumeration, and time-delay payloads. We also 
assume that the attacker can obfuscate these payloads 
through encoding, comment insertion, spacing 
manipulation, or character substitution to bypass naive 
string-matching defenses. We acknowledge that a fully 
adaptive adversary may attempt gradient-free or 
reinforcement-based evasion strategies targeting the 
model’s n-gram representations. 
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The application environment is assumed to operate 
under typical web-stack conditions: an Apache2 server, 
a relational backend database, and PHP-based form 
handling, all of which process user-supplied input prior 
to sanitization. We assume no direct access to server 
configuration files, file systems, or administrator 
credentials. Additionally, we assume that network-level 
protections may be in place but cannot be solely relied 
upon to prevent application-level SQL injection 
attempts [6]. 

Our model also considers potential bypass 
strategies. These include adversarially modified 
payloads designed to evade ML-based detectors 
through syntactic variation; hybrid payloads combining 
SQL and HTML/JavaScript fragments; and low-and-
slow attack strategies where an adversary distributes 
attempts to avoid pattern-based thresholds [17]. By 
explicitly modeling these capabilities, our approach 
evaluates not only whether the system detects known 
SQL threats, but also whether it generalizes to 
mutated, encoded, and behaviorally atypical payloads. 

This threat model informs the design of our defense 
by emphasizing explainability, linguistic structure 
detection, and forensic traceability-features that 
support not only technical detection but also incident 
reconstruction and accountability requirements in 
security and regulatory contexts. 

3.2. Motivation 

While our implementation describes the practical 
components of the detector, the core contribution of 
this work lies in the conceptual shift from character-
based sanitization to linguistic pattern modeling. By 
focusing on structural and semantic properties of attack 
language-rather than on individual tokens our approach 
reframes SQLIA defense as a language classification 
task. This conceptual reframing is critical because it 
enables explainability, facilitates forensic traceability of 
malicious patterns, and offers greater adversarial 
robustness compared to purely syntactic or statistical 
models. 

As one can see, there are a variety of approaches 
when performing a SQLIA, along with a matched 
variety of defenses. Many of the preexisting ones, 
however, are designed off of static algorithms that are 
typically centered around individual human language 
characters or query decision trees. Some defenses do 
use the hybrid approach of combining the machine 
learning aspect to spot certain attack phrases. This 

type of work has inspired the type of defense we look 
to improve on through this research. Given the rapid 
growth of AI capabilities, enhancing existing defensive 
strategies with AI offers one of the most promising 
solutions to SQLIA vulnerabilities. 

In order to maximize the existing defensive 
strategies, our proposed idea to counter SQL injection 
attacks would be to train automated intelligence to 
detect attack language, errors, and common attack 
techniques. As previously mentioned in the other 
sections, there are a large variety of ways to conduct a 
SQL injection attack. In order to narrow the focus of 
this AI research, we looked at the most recent large-
scaled attacks to determine which methods were the 
best to focus on. Cross-scripted sites, better known as 
XSS attacks, rely on any input form within a website to 
carry out their attacks and were the method behind the 
Resume Looters attacks on over 65 websites in 2023 
that gave access to over 2 million users’ information 
[18]. The cross-site scripting attacks are especially 
dangerous because of the ubiquity of search bars, 
suggestion boxes, and comment threads on modern 
websites. 

3.3. Language Processing Incorporated Defense 

3.3.1. Overall Logic 

The innovation of out proposed method specifically 
comes from the language processing approach in 
comparison to traditional sanitization defenses. As 
most of those sanitizers only examine singular 
characters, our language processing aspect focuses on 
identifying specific patterns post-vectorization. This will 
produce higher accuracy rates as SQLIAs are 
becoming more advanced then the brute-force 
methods that were originally most popular. 

The idea of our defense is to first create a training 
file to teach the language processor to treat numerical 
vectors and regular expression strings. This would 
prepare the language processor while we also look to 
create connections through a server to the database. 
By running benign and malicious text files through a 
runner file, we could test our new language processor. 
Through the server, it would send the prediction values 
and store them in the database. After the testing, we 
would label each payload with its either benign or 
malicious origins so that the accuracy rates, true 
positives, true negatives, false positives, and false 
negatives could be calculated. The flow chart in Figure 
1 depicts this process. 
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Figure 1: The workflow of defensive detection pipeline 
showing the transformation of raw input into tokenized, 
numerical vectors, which then go through threshold 
calculations. Each stage reflects how the model extracts 
linguistic cues associated with malicious intent, enabling 
automated identification of SQL injection attempts. 

3.3.2. SQL Map and Payloads 

To establish a baseline understanding of SQL 
injection payload behavior, we examined preexisting 
educational tools and intentionally vulnerable web 
applications commonly used in cybersecurity research. 
Resources such as Pacheco’s SQL injection lab and 
the Damn Vulnerable Web Application (DVWA) allowed 
us to observe how automated tools and manual 
payloads interact with poorly secured database 
environments [19] (see Appendix A for implementation 
details). These environments provided controlled 
conditions in which we could analyze common attack 
patterns, successful payload structures, and the 
conditions under which injections bypass or fail against 
implemented safeguards. This exploratory phase 
informed our later design choices by clarifying which 
payload characteristics are consistently exploitable and 
which defensive mechanisms are most easily 
circumvented. 

We also used DVWA to study reflected and stored 
cross-site scripting behaviors, comparing how different 

security levels affected detection success and failure. 
By executing repeated payload loops through a 
Python-driven interface, we evaluated the reliability and 
repeatability of common attack vectors. These insights 
guided the refinement of our detector by highlighting 
which linguistic and structural patterns most reliably 
indicate malicious intent. 

3.3.3. Building a Test Webpage for Baseline 
Defense 

After experimenting with existing testing tools, we 
constructed a deliberately vulnerable “guestbook” 
webpage to better observe how SQL injection payloads 
behave in a controlled environment. The page 
consisted of a basic name-and-message input structure 
connected to a small MySQL backend. We then 
executed a curated set of payloads against the page 
using a Python script, allowing us to empirically confirm 
which attack types reliably bypassed its minimal 
protections. These results established a baseline 
vulnerability profile to inform the design of our defense. 

With this profile in place, we reversed our 
perspective and began hardening the page against the 
same categories of attacks. Initial modifications 
focused on server-side sanitization to mitigate common 
XSS-related behaviors, such as the use of special 
characters. A simplified example is shown in Figure 2, 
which demonstrates how escaping user-supplied 
content prevents script injection. Additional logging 
functionality was added to record all incoming payloads 
within a MySQL database, enabling later analysis and 
supporting forensic traceability. 

 

Figure 2: Illustrates the first layer of defense in the SQL 
injection workflow by preventing executable script tags or 
encoded payloads from being rendered, an example shown 
with htmlspecialchars 

Code snippets like 2 help catch simple attacks in 
order for us to develop a more advanced defense. The 
PHP code was also modified to add a logging function 
that recorded every payload into a pre-configured 
MySQL database (more implementation details in 
Appendix B). 

To extend the defense beyond basic sanitization, 
we incorporated machine-learning techniques capable 
of distinguishing natural language from malicious input 
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patterns. Representative high-risk phrases and 
structural features from common SQLIAs such as 
comment injections, time delays, traversal sequences, 
external resource calls, and encoded characters were 
seeded into the model’s training set to support pattern 
acquisition. The system then applied a supervised 
learning pipeline using TF-IDF character n-grams and 
logistic regression, coupled with threshold optimization 
based on F1 and precision scores [17]. This approach 
allowed the model to learn generalizable linguistic 
signatures of SQL injection attempts rather than relying 
on fixed string matching. 

Our adaptive threshold was selected to balance 
precision and recall, but it would benefit from further 
empirical grounding. Future work should include 
studies comparing static, percentile-based, and 
dynamic thresholds to quantify how each impacts false-
positive rates and classifier stability. This would provide 
a more formal justification for the chosen thresholding 
strategy and improve the model’s reliability in 
operational settings. 

3.3.4. Python Coding 

When running the Python files, we chose to do so in 
a virtual environment through the Linux command lines 
in order to protect the files on my device. From there, 
we were able to open an Uvicorn server for the files 
and database to work in conjunction with one another. 
In a separate terminal, we were able to test the code by 
running "curl" functions that fit under the "benign" or 
"attack" category in which a prediction of 0 or 1, 
respectively, would be outputted. For example, a 
payload of an alert script attack returned a "1" 
prediction, representing an attack. 

Although the system is implemented using several 
Python modules working together, the underlying idea 
is straightforward: each stage of the pipeline transforms 
raw input into increasingly meaningful linguistic 
representations. Training builds the model’s 
understanding of benign versus malicious structure, 
serving exposes the model to real-time queries, and 
evaluation measures how reliably these learned 
patterns generalize. The conceptual modularity is more 
central than the specific coding sequence, because it 
shows how linguistic intelligence can be layered onto 
traditional SQL defenses. 

From there, we created a handful of Python files 
that when all have been ran, produce the accuracy 
results of our tests. The "train_detector.py" file created 
took in both the benign and malicious files and used 

that data and its length to calculate a threshold of 
probability to use in determining whether it was 0 
(benign) or 1 (malicious). It also included other 
precautions that help filter the code through regex 
language or char n-grams, which will be discussed in 
the results portion. Next, we have a 
"serve_detector.py" file that configures the database 
and connects it to the MySQL application. It grabs the 
adaptive threshold from the "train_detector.py" file and 
also starts the FastAPI application within the Uvicorn 
server. From there, its make_prediction() function uses 
a vectorizer, and a heuristic fallback, to calculate a 
prediction probability and ultimately, a prediction score 
of 0 or 1. Finally, it logs the prediction and score to the 
database. Another important file includes "labels.py" 
that after configuration, logs the original category of 
"benign" or "malicious" to the database so that the 
"calculate.py" file can pull the original assignment in 
comparison to the predicted assignment to produce the 
accuracy rate, true positive, false positive, true 
negative, and false negative values. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

The experimental logic of our system followed a 
modular pipeline consisting of data preprocessing, 
model training, and prediction validation. The raw 
payloads from both benign and malicious sources were 
first cleaned and normalized before being passed into 
the language-based detection model. Each payload 
was evaluated using adaptive thresholds to 
dynamically determine classification probabilities. This 
logical flow ensured that each phase of processing 
could be tested and validated independently before 
integration. By designing this in a modular development 
cycle, it ensured that each different part could be 
worked on independently of the progress of other parts. 
Towards the end of the development cycle, all parts did 
not to be synchronized to create stable connections in 
the sequence flow, but we were able to make changes 
as necessary to each parts individually in the process. 

The experiments were conducted on an Ubuntu 
Linux-based operating system, with all the code being 
written in Python 3.13 through the Visual Studio Code 
software. In terms of other tools, we used MySQL as 
the Linux-based database, FastAPI as the framework, 
and Uvicorn as the Python-based server. The main 
dependencies included NumPy, Pandas, Joblib, and 
Scikit-learn for data processing and model training. The 
dataset consisted of 39,967 payloads evenly distributed 
between benign and malicious samples. 
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For model configuration, we tested multiple 
preprocessing strategies including tokenization, 
character n-grams, and vectorization to improve input 
representation. The adaptive threshold mechanism was 
initialized to update based on the ratio of benign to 
malicious samples per batch. All outputs were logged 
and visualized to track improvements in accuracy, true 
positives, true negatives, false positives, and false 
negatives over iterations 

4.1. Results Analysis 

Evaluation samples were generated to simulate the 
attacker capabilities described in our threat model, 
including obfuscation techniques and syntactic 
mutation strategies. Within our generated files, all text 
was lowercased, Unicode-normalized, stripped of null 
bytes, and tokenized using a reproducible, 
deterministic preprocessing pipeline implemented with 
version-pinned Python libraries [20]. This 
preprocessing step ensured that every sample could be 
regenerated and re-evaluated in subsequent 
experiments. For training, we applied TF-IDF character 
n-gram extraction followed by logistic regression with 
fixed random seeds for deterministic results. Model 
evaluation was conducted using 5-fold cross-validation, 
allowing us to report metrics (precision, recall, F1-
score) rather than relying on a single experimental run. 
These methodological controls were incorporated to 
support reproducibility, reduce dataset bias, and 
provide robust evidence for the model’s performance. 

In the initial trial run, the model achieved an 
accuracy rate of only 1.65%, with 0 true positives, 304 
true negatives, 304 false positives, and 0 false 
negatives. Manual curl tests revealed that the main 
issue stemmed from data transfer and conversion. We 
investigated the most efficient methods in modern 
machine learning and found that our missing 
component was vectorization, which is turning raw 
textual data into numerical vectors that the detector can 
more easily process [21]. Implementing vectorization 
reduced the number of null values from unprocessable 
payloads. We also imported NumPy, a Python 
numerical library that supports high-level mathematical 
computing, to further optimize processing [22]. This 
original test run and the following results from the 
implementation details in this section are depicted in 
Figure 3. 

Rather than relying solely on surface-level token 
comparisons, our system models SQL input through 
multiple layers of linguistic representation. 

Vectorization captures higher-order statistical 
characteristics, tokenization maps human-readable 
structure, and the heuristic fallback provides 
interpretable, rule-based support. Together, these 
layers illustrate how linguistic structure-not simply 
string matching defines malicious intent [23]. 

 

Figure 3: The accuracy rate percentage that resulted from 
running each step outlined in the implementation details, 
graphed to show its development. 

After this change, we received an accuracy rate of 
43.22%, 0 true positives, 10034 true negatives, 0 false 
positives, and 13180 false negatives. This revealed 
that during tokenization debugging, the threshold had 
shifted, causing the model to classify all inputs as 
benign (score of 0). The adaptive threshold plays a 
conceptual role by enabling the detector to calibrate 
itself to the underlying distribution of benign versus 
malicious patterns. Instead of using a static boundary, 
the model learns how uncertainty manifests within its 
linguistic feature space, which is essential in 
environments where attack patterns evolve 
unpredictably [24]. We also included baseline code for 
char n-grams, that help in language processing models 
detect certain language patterns [10]. We also 
observed that roughly 33% of payloads were excluded 
from the final counts because they were labeled as null 
values. To fix this, we added a heuristic fallback to 
catch certain phrases or character patterns that signify 
a benign or malicious payload [17]. By implementing 
this regex method, we were able to decrease the 
amount of unprocessable payloads and increase the 
total count. 

With the addition of an adaptive threshold and regex 
code portions, our accuracy rate increased to 57.94%, 
13150 true positives, 300 true negatives, 9734 false 
positives, and 30 false negatives. Further debugging 
identified several type and attribute errors that 
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prevented proper integration between components of 
the detector. We also reviewed the text files 
themselves to ensure that each payload was the 
category it was actually supposed to be. This 
debugging was crucial in aligning all the correct 
database and function names to each part of the 
detector files. Although the classifier performs well on 
unmutated test payloads, its performance may degrade 
under adversarial mutation, a common challenge for n-
gram-based NLP models. 

 

Figure 4: Final model performance metrics summarizing the 
classifier’s ability to correctly distinguish benign and malicious 
queries. These results provide insight into detection reliability 
and highlight areas where further feature refinement or 
ensemble approaches could improve operational 
performance. 

Our final produced values were an accuracy rate of 
83.85%, 18349 true positives, 10132 true negatives, 
4919 false positives, and 567 false negatives. This 
elevated false-positive rate suggests that, although the 
model captures malicious structure, it may also be 
oversensitive to benign queries that share surface-level 
linguistic features. Although our system did not achieve 
100% accuracy, we observed significant progress with 
each retraining phase. Moreover, we found that 67% of 
web applications are vulnerable to SQL injection 
attacks [3]. As we refer to the "vulnerable websites", 
this accounts for the estimated 67% accounted for via 
the source. When adding our total number of payloads 
to get 39967 of them, we can divide the amount of false 
negatives by that sum to see how many malicious 
attacks are not caught and are flagged as a negative 
(0, benign). This is displayed in Figure 4. 

To most effectively and objectively display our 
results, we chose to report the precision, recall, and F1 
score. These metrics are commonly used in the 
machine learning academic community to measure 

categorization models efficiency. They are especially 
important in our dataset since they are designed to 
cater towards imbalanced data sets, so we are actively 
fighting against any possible bias by choosing these 
metrics [25]. 

For our measure of precision, we calculated the true 
positives divided by the sum of the true positives and 
false positives to get a final value of .789 (shown in 
equation 1). The accuracy rate for all implementation 
steps and in Table 1 are defined by the total number of 
correct predictions divided by the total number of 
attempts. 

 

         (1) 

For our measure of recall, we calculated the true 
positives divided by the sum of the true positives and 
true negatives to get a final value of .97 (shown in 
equation 2).  

 
         (2) 

For our measure of F1, we calculated the product of 
2 and precision and recall divided by the sum of 
precision and recall to get a final value of .87 (shown in 
equation 3).  

         (3) 

Overall, our precision metric of 0.789 may have 
been relatively smaller in comparison to the recall 
metric, but in the general concept of machine learning, 
it holds above a 0.75 success threshold. The recall 
value was very high, with a score of 0.97. Moreover, 
the F1 score that balances both the other metrics held 
at 0.87, another relative success. 

4.2. Comparison with Existing Defenses 

In order to prove the effectiveness of our defensive 
system further, we ran another experiment as a 
comparison. Although there are limited direct input 
sanitization Linux code available, we implemented a 
baseline sanitizer [7]. This sanitizer was designed to 
only match characters with malicious examples and not 
utilize the language processing capabilities of our 
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defense to demonstrate its novelty and importance. It 
also excludes the tokenization and vectorization 
features needed in our algorithms, solely taking in raw 
text. The comparison in this study is intentionally 
limited to a baseline sanitizer due to the restricted 
availability of more advanced defensive tools such as 
WAF-based or hybrid ML systems [9]. This constraint 
reflects the research context rather than the theoretical 
scope, and expanding the comparison set remains an 
important direction for future work. 

 

Figure 5: Payloads traditional defense [7] successfully 
handled out of the total payloads successfully handled by our 
defense. 

Due to this, only 29% of the original benign and 
malicious payloads were even able to be processed by 
the baseline sanitizer (11607 of the 39967). This shows 
that even before executing the program, there is an 
extreme deficit to what our defense can process versus 
the traditional defense, as reflected in Figure 5. 

 

Figure 6: Final values of true positives, true negatives, false 
positives, and false negatives from the traditional baseline 
sanitizer [7]. 

As a result of running the baseline sanitizer, we 
received an accuracy rate of 46.06%, 333 true 
positives, 5013 true negatives, 4 false positives, and 
6257 false negatives displayed in Figure 6. From this 
experiment, we can deduce that there is an imbalance 
in being able to process benign versus malicious 
payloads in the traditional sanitizer. Moreover, the false 
negative rate was relatively high compared to the other 
results. We also represented this data with the 
precision, recall, and F1 metrics from our defense’s 
results for direct numerical comparison [25]. 

For our measure of precision, we calculated the true 
positives divided by the sum of the true positives and 
false positives to get a final value of .988 (shown in 
equation 4).  

         (4) 

For our measure of recall, we calculated the true 
positives divided by the sum of the true positives and 
true negatives to get a final value of .051 (shown in 
equation 5).  

         (5) 

For our measure of F1, we calculated the product of 
2 and precision and recall divided by the sum of 
precision and recall to get a final value of .097 (shown 
in equation 6).  

 
         (6) 

Although the traditional sanitizer had a higher 
precision rate, its capability to process payloads, recall 
metric, and F1 metric were all lower than our defensive 
system. When implementing our defense instead, the 
accuracy rate saw a 38% increase from 0.46 to 0.84 as 
shown in Table 1. The recall metric increased 
significantly from the traditional defense’s 0.051 to our 
0.970, as shown in Table 2. The F1 metric increased 
by significantly from the traditional defense’s 0.097 to 
our 0.870, as shown in Table 2. The precision rate of 
the traditional defense (0.988) was 20.04% better than 
our defense (0.789), which could be a result of the 
lesser payloads processed. 
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Table 1: The Comparison of the Accuracy Rate between 
our Method and the Existing Method [7] 

  Our Proposed Method  Existing Method [7]  

Accuracy   0.84   0.46  

 

Table 2: The Comparison of our Proposed Method with 
Existing Method [7] in Terms of Precision, 
Recall and F1 score 

  Our Proposed Method  Traditional Method [7]  

Precision   0.789   0.988  

Recall   0.970   0.051  

F1   0.870  0.097  

 

Although the model demonstrates strong recall, the 
precision score (0.789) indicates that a portion of 
benign traffic is still being misclassified as malicious. 
To improve precision in future iterations, we would 
utilize expanded feature engineering, ensemble 
methods that combine linguistic and statistical 
classifiers, and contextual models that incorporate 
surrounding query history or user-behavior patterns 
[26]. Such enhancements may produce a more 
discriminative boundary between legitimate user input 
and evolving attack payloads. 

These results highlight not only the performance 
gains of our implementation but also the broader 
conceptual value of treating SQL injections as linguistic 
phenomena. Models grounded in character n-grams 
and structural cues can detect malicious intent that 
eludes traditional syntactic filters. More importantly, the 
approach provides interpretable signals identifiable 
linguistic patterns that benefit incident response, digital 
forensics, and policy-driven audit requirements. 

5. DISCUSSION AND LIMITATIONS 

Although our tests used manually created 
vulnerable webpages and controlled payload loops, 
these experiments served primarily as a conceptual 
sandbox rather than a full replication of production 
systems. As such, external validity must be considered. 
Real-world SQL injection attempts involve higher query 
variability, more complex layers, multiple database 
engines, and attacker strategies that evolve over time 
[6]. While our linguistic defense generally worked well 
across the payload classes we tested, further 
evaluation in high-volume environments is necessary to 
assess robustness against novel or unseen attack 

patterns. Future work will incorporate logs from 
enterprise-scale web applications, real-time monitoring 
pipelines, and simulations to validate how the detection 
model performs under operational load and adaptive 
pressure. 

Being that the research was completed on one 
single laptop, its computing capabilities were lesser in 
comparison to a company’s research that can utilize 
multiple devices for increased payloads and larger 
calculations. One shortcoming of our study is the 
limited dataset size used to test our processing 
defense. Although over 37,000 payloads may seem 
extensive, the model’s performance could likely 
improve with a larger and more diverse dataset. A 
greater variety of SQL injection patterns would enable 
more robust training and finer tuning of the detection 
thresholds. 

Additionally, while our results demonstrated high 
true positive rates and low false negative rates, the 
ratio of true negatives to false positives could be 
improved. This indicates that many benign queries 
were mistakenly classified as malicious. Although false 
positives are not inherently damaging, they can 
increase operational overhead by requiring manual 
verification and potentially disrupting normal system 
functionality. A further limitation of our approach is its 
vulnerability to adversarial machine-learning attacks 
specifically crafted to exploit weaknesses in linguistic or 
character-level n-gram models. Because the classifier 
relies heavily on character-sequence statistics, an 
attacker could generate adversarial payloads that 
preserve the semantic meaning of an injection while 
subtly altering its character distribution to evade 
detection. These risks underscore the need for future 
work incorporating adversarial training, ensemble 
representations, or hybrid symbolic constraints to 
ensure robustness against deliberately evasive 
injection patterns. 

6. CONCLUSION 

This paper discusses the importance of ingraining 
language processing techniques into pre-existing SQL 
defenses for preventing SQL injection attacks. Through 
our extensive research and practice, we were able to 
train the detector to generate predictions based on its 
learned algorithms. It was through example codes of 
benign and malicious code that we were able to train 
the detector to make predictions based off of its 
algorithms. Those predictions then used dynamic 
thresholds to calculate whether their probability would 
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be classified as an attack or not, which was 
demonstrated through accuracy rates, showing it 
outperformed a one-dimensional sanitization defense. 
SQLIA defenses that provide transparent reasoning are 
increasingly important for meeting legal expectations 
around explainability in automated decision-making 
systems. 

The model’s tendency to over-flag benign input 
limits its immediate operational viability, particularly in 
environments where database availability and SOC 
efficiency are critical. Future work should explore 
threshold calibration, dynamic confidence scoring, and 
hybrid architectures that pair interpretable linguistic 
signatures with secondary verification layers. Reducing 
false-positives while maintaining an ability to interpret 
and robustness will be crucial for transitioning this 
research into a deployable enterprise-scale defense. 

Obtaining the final accuracy rate of 83.85%, a 
precision score of 0.789, a recall score of 0.97, and the 
F1 score of 0.87 compared to the metrics of the 
traditional input sanitizer shown in our comparison 
experiments proved the effectiveness of our defense. 
Not only does integrating the language processor, 
tokenizer, and vectorizer into sanitization practices 
increase the success metrics, but it also increases its 
payload processing capabilities. The model’s ability to 
produce traceable linguistic indicators of malicious 
input offers value for digital forensic workflows by 
helping investigators reconstruct attack sequences. In 
future work, we would look to train our defense with 
even more complex payloads and expand its 
algorithmic practice. We could also look to gain access 
to other pre-existing defense software to further 
compare the strengths and weaknesses of each. 

APPENDIX 

Experimental Testbed and Preliminary Attack 
Exploration 

A controlled SQL injection testbed was constructed 
using publicly available educational resources, 
including Pacheco’s Creating a Vulnerable SQL 
Injection Lab for SQLMap Practice. The files were 
deployed within an isolated Linux virtual environment 
configured with Apache2 and MySQL to ensure 
operational safety and containment [20]. Initial 
configuration required minor adjustments to PHP page 
dependencies and environment permissions, after 
which SQLMap scans reliably enumerated available 
databases and demonstrated common injection 

vectors. These exploratory exercises provided 
foundational insight into typical payload structures and 
attack patterns frequently exploited by automated tools. 

Development of Custom Vulnerable Pages and 
Baseline Defense Prototype 

To complement the use of established testing 
environments, we constructed a minimal custom 
“guestbook” application designed to model a typical 
input-database workflow targeted by SQL and XSS 
attacks. The interface consisted of a guest name field 
and message field, backed by a MySQL database 
created within the Linux environment. This simplified 
configuration allowed us to observe how unprotected 
input is stored, rendered, and subsequently exploited. 

To evaluate the application’s baseline vulnerability, 
we executed a Python-based payload harness that 
iterated through a structured list of common SQLIA and 
XSS strings. The script recorded which inputs were 
successfully executed or injected into the page, 
providing a clear profile of the weaknesses present in 
the unsanitized version of the system. These results 
guided the subsequent design of defensive features. 

A preliminary defensive layer was introduced by 
integrating server-side sanitization into the PHP 
rendering logic. This included the use of 
"htmlspecialchars" 2 to neutralize characters frequently 
used in reflected and stored XSS attacks. Additional 
logging statements were added to capture raw user 
input in a dedicated MySQL table, enabling later 
comparison between attempted and mitigated 
payloads. 
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