42 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, 1, 42-54

A Linguistic-based Method for SQL Injection Attack Detection and

Defense”

Moira Geiger and Zhengping Jay Luo’

Department of Computer Science and Physics, Rider University, Lawrenceville, New Jersey, USA

Abstract: As the prominence of artificial intelligence (Al) has grown, companies are finding more ways to incorporate it
into previously existing technological infrastructures to optimize their performance. Structured Query Language (SQL) is
a popular way to store and retrieve data, and recently has been combined with Al search algorithms to speed up these
processes. However, these successes make SQL vulnerable to attacks where malware is injected to gain access,
modify, or even delete restricted data, which is also known as SQL Injection Attacks (SQLIA). This paper presents a
detection approach that based on language processors, and shifts the focus of defenses against SQLIA from static
pattern matching to recognizing the underlying linguistic and structural features of SQL injection attacks. Unlike
traditional sanitization, this newly proposed defense will combine tokenization and vectorization with a language
processor to detect malicious patterns and flag them. After running our proposed defense on a large public dataset, we
received a precision score of 0.789, a recall score of 0.97, and an F1 score of 0.87 in terms of detection performance,

which demonstrates the effectiveness of our defense method.

Keywords: Language processor, machine learning, sanitization, structured query language, SQL injection attacks,

tokenization, vectorization.

1. INTRODUCTION

Relational databases are widely used across
industries due to their scalability and ability to support
complex backend systems [1]. They rely on Structured
Query Language (SQL) to efficiently manage, query,
and update stored information. SQL databases have
become foundational to modern data management due
to their robustness and performance [2]. However, this
central role also makes them prime targets for cyber
attacks, threatening the confidentiality, integrity, and
availability of sensitive data. These attacks now
intersect with broader cybersecurity and legal
frameworks, as SQL-based systems often store
regulated data and therefore require defensible,
auditable detection mechanisms that satisfy both
technical and compliance standards. Among these,
SQL injection attacks (SQLIAs) remain one of the most
prevalent and dangerous, allowing adversaries to insert
malicious code into user inputs in order to manipulate
or extract database content [3].

SQLIAs are consistently ranked among the top five
most severe software vulnerabilities by OWASP [4].
Their threats are amplified by the wide adoption of
machine learning (ML) techniques, as many machine
learning-driven systems either store critical data in SQL

*Address correspondence to this author at Department of Computer Science
and Physics, Rider University, Lawrenceville, New Jersey, USA;
Email: geigermo@rider.edu

*This work was sponsored by MacMillan Fellowship for Scientific Research
Scholarship from Rider University.

databases or utilize SQL to optimize their functionality.
ML can enhance database performance through
predictive query optimization, automatic indexing, and
workload management [5]. However, its integration
without proper processors introduces new
vulnerabilities by expanding attack surfaces and
enabling adversaries to automate large-scale SQL
injection attempts [6]. This combination highlights the
need for defenses that improve detection accuracy
while also providing forensic traceability and legal
defensibility. Stakeholders increasingly require
transparent explanations for how and why automated
systems flag particular queries [6]. Introducing the
language processor domain to a more matching-based
algorithm can protect against these attacks.

Traditional mitigation techniques rely heavily on
input sanitization, which attempts to filter out known
malicious query patterns [7]. While useful, these
approaches are weak: many SQL injection and cross-
site scripting (XSS) attacks bypass sanitization by
slightly modifying known payloads. Furthermore,
sanitization mechanisms that depend on regular
expressions are themselves susceptible to regex-
based denial-of-service (ReDoS) attacks, which can
exhaust system resources [7]. Preexisting algorithms
that use static methods often require more manual
intervention and are not aligned with real-time data
needs [5].

Some other research endeavors have incorporated
advanced practices into their SQL defense. However,
the usage of tools, such as decision trees, can be

E-ISSN: 3070-5789/2025

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 43

vulnerable to the actual attack language if it is looking
to elevate privilege [6]. Others use machine learning to
compare distances between run-time and developer-
intended queries to estimate if something is benign or
not [1, 8]. Although utilizing ML for distance measuring
can create a large overhead that a language processor
would not [1]. Some train ML algorithms to work with
web application firewalls, but the attacks that run
against them by mutating an input to a semantically
equivalent input, are in a different form [9]. Yet most
ML-based approaches provide limited insight into which
specific linguistic or structural features triggered a
detection, reducing their usefulness in digital forensic
reconstruction after an incident.

In this paper, we present a linguistic approach that
shifts the focus from static pattern matching to
recognizing the underlying linguistic and structural
features of SQL injection attempts. Our research
improves the preexisting input sanitization technology
with the power of language processing capabilities.
Finally, we integrate these components into a prototype
attack detector powered by language processing and
MySQL. The performance of this system is evaluated
through accuracy metrics, offering insights into the
viability of defenses against SQL injection that extend
beyond preexisting matching-based methods.

Our new defensive system would most efficiently
defend against tautology attacks, errors, and Boolean-
based attacks, and special character attacks. Since the
foundation of our defense is focused on detecting
human language versus attack language, it defends
input with out of the ordinary characters the best. It was
designed this way since a majority of SQL injection
attacks are successful by consistently running
characters against the database until they find a
combination of attack characters not sanitized by the
preexisting defense. The implementation of character
n-grams and not just static pattern-matching,
simultaneously addresses differences due to spelling
variation, morphology, and word choice [10]. Because
the model uses TF-IDF character n-grams, it inherits
the known vulnerability of linear text classifiers to
adversarial token-level mutations. Although out-of-band
attacks that work through network protocols, like DNS
or HTTP, are important, the previously mentioned
attack categories are much more common and can be
ran by even amateur hackers. By targeting the types of
attacks that make up the majority of SQLIAs, our
defense found a higher success rate. To situate our
contribution within real-world attack conditions, we
develop a threat model that outlines the attacker's

capabilities, system assumptions, and plausible bypass
strategies. This model guides both the design and
evaluation of our defense.

The main contributions of the paper are outlined as
follows:

« We implemented a malicious SQL injection
attack detector based on linguistics.

« We incorporated vectorization, string
tokenization, a heuristic fallback, and an adaptive
threshold to improve our defense from the levels
of a traditional sanitization.

+ We estimated a 97.82% decrease in approximate
vulnerable websites after our defensive system
was ran against their payloads, compared to the
estimated percentage of vulnerable websites [3].

* We received a precision score of 0.789, a recall
score of 0.97, and an F1 score of 0.87 for the
successful detection of payloads of benign and
malicious texts on a public dataset.

2 LITERATURE REVIEW

2.1. SQL Injection Attacks Background

Specifically, SQL injection attacks have been a
growing threat to relational databases because of the
large reward of vulnerable information that hackers
gain as a result of it. Not only do SQLIAs endanger
protected data, but they can also compromise the
underlying operating system on which the SQL server
runs. Certain attacks that look to escalate privilege in
order to access data can also use the newfound
privilege to overrun and execute commands on the
host operating system [6]. Such attacks can damage
organizational reputations and cost thousands to
millions of dollars in recovery and remediation efforts.
The distrust that could stem from the public regarding
SQLIAs is an important consequence. While many
studies describe their severity, fewer address how
modern Al-driven systems increase the attack surface
by introducing new automated vectors that scale these
attacks. As SQL systems become embedded within
machine-learning enhanced workflows, the challenges
of detecting subtle, mutated payloads grow more
complex, especially in environments that require
interpretable and verifiable security responses.

In theory, the problem of SQLIAs could be resolved
if every datagram were opened and analyzed within a
network. However, most networks process such a large

44 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Geiger and Luo

quantity of data that this is close to impossible, leaving
the chance of missed detection very high [4]. A
common issue with many of the defense systems
against injection attacks is the high rate of both false
positives and false negatives.

2.2. SQLIA Attack Strategies

2.2.1. Attacks through Firewalls and Browsers

One common strategy is to exploit HTTP/HTTPS
pathways to bypass an application’s firewall, especially
when the system lacks mechanisms that can detect
structural changes in mutated or encoded inputs [6].
Another operates in a similar manner but looks to
target the user side. By targeting direct user input or
manipulating cookies stored in a browser, attackers
can often access data more easily when client-side
protections are weak [1].

2.2.2. Attacks Using Language

Attackers frequently use tautology-based injections
(e.g., appending “OR 1=1") to force a query to always
evaluate as true, sometimes pairing these with UNION
statements to redirect where data is pulled from [6].
These techniques highlight how attackers rely on
recognizable linguistic and structural patterns, yet
many current ML systems fail to explain which parts of
the input made it suspicious, limiting forensic
traceability after an incident. Moreover, those can be
joined with union query statements that say to retrieve
something ‘FROM’ another location to retrieve from a
separate query [11].

2.2.3. Attacks Using Errors and Output

Other types of attacks include error-based and
Boolean-based that look to gain knowledge of the
structure of the query, instead of the data it contains,
by receiving either errors or ‘true’ Booleans back on
code related to movement [11]. In addition, piggy-back
queried attacks and stored procedure injections use
malicious code written by the hacker to modify or
retrieve data from within the query. In piggybacked
queries, attackers append malicious code (often
separated by semicolons) to an existing query. In
stored procedure injections, they replace legitimate
procedures with maliciously crafted versions [11]. Such
semantically equivalent but syntactically modified
payloads expose weaknesses in models that rely solely
on statistical similarity rather than structural linguistic
features.

2.3. SQLIA Defensive Strategies

2.3.1. Defense Using Traffic Inspection

The defensive side of these injection attacks looks
to catch the attack attempt beforehand rather than fix it
when it is already inside the SQL database. One
method is similar to the ideal situation mentioned in
Section 2.1 where deep packet inspection methods of
flow monitoring and behavioral traffic analysis are used
to detect abnormal patterns or sudden spikes in
datagram communication [12]. This strategy is also
seen used in conjunction with machine learning
algorithms that can be trained to process large
quantities of network data that would be difficult to
process solely within the SQL.

2.3.2. Defense Comparing Previous Algorithms

Hybrid approaches combine machine learning with
SQL-specific ~ features, such as tree-based
representations or keyword mining, to reduce false
positives. While these approaches can improve
detection accuracy, they inherit two major limitations:
they are highly sensitive to adversarially mutated
payloads, and they generally lack the ability to be
verified, making it difficult for analysts to determine
which part of the input contributed to a malicious
classification [13]. More advanced machine learning
methods similar to those have been developed to
compare data inside the query.

2.3.3 Defense Using Query Comparisons

More dynamic systems, such as the CANDID
model, compare developer-intended queries against
user-supplied ones to detect inconsistencies [1].
Although these systems offer an improvement over
static filters, they struggle with layered input structures
and do not provide fine-grained explanations about why
the queries differ. As a result, they lack the forensic
traceability = necessary for understanding or
reconstructing an attack. Moreover, this approach
struggles with layered input structures, such as loops,
which are difficult to analyze dynamically. Following the
idea of monitoring the user side, some SQL’s use an
ontology approach that cross checks the semantics of
the user side to see how well it matches with true
human languages versus malicious code [1]. These
systems also tend to be brittle against adversarial input
mutations, where attackers slightly alter syntax or
encoding to evade ML classifiers.

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 45

2.4. Machine Learning Techniques used in SQLIA

The machine learning aspect has become more
ingrained on both the defensive and attacking sides of
SQLs. Recent attack developments have found that
automated testing techniques are able to bypass web
application firewalls when they match up with the
previously stored payloads in a database [6]. This
proves the threat of the "insider", someone who has
access to the inner workings of a software, who can
train a machine learning model from the inside to
create holes in input boxes for the outside attackers.
However, most ML-based defenses rely on opaque
models where the decision-making process is not
transparent, limiting their usefulness in security settings
that require explainability and ability to be verified.
Furthermore, adversarial mutation tools can generate
payloads that bypass these models by altering syntax
while preserving malicious intent. On the defensive
side, decision trees and long short term memory
(LSTM) are currently very popular [14]. However, the
lack of ability to interpret in deep ML models makes
them unsuitable for security environments that require
transparent and verifiable detection logic. The recurrent
neural networks that LSTMs operate as a part of,
however, can not adapt as quickly as attack language
is adapting- leaving further vulnerabilities.

In terms of the rise of SQLIAs, machine learning is
being used as an augmentation tool to preexisting
algorithms, such as data processing in deep data
mining mentioned previously. In certain cases, it was
found that the addition of Al into traditional algorithms
had a yield of up to a 40% reduction in query execution
time and a 25% increase in throughput for indexing
strategies that change dynamically with the query [11].
Machine learning-enhanced algorithms not only
process more data in less time but also adapt more
effectively to evolving user inputs.

Language processing techniques offer an
opportunity to address the shortcomings of existing ML
approaches by focusing on structural and behavioral
characteristics of input rather than surface-level tokens
alone [15]. Because NLP-based detection can highlight
which n-grams or linguistic patterns contributed to a
classification, it naturally improves explainability and
forensic traceability. This ability to interpret is one of
the motivations behind our proposed approach, which
seeks not only to detect attacks but to identify the
specific linguistic patterns that make them malicious.
Furthermore, its in-house style of processing eliminates

the need for outside processes, which henceforth
eliminates the need for a whole new set of resources,
time allocation for tune-ups, and vulnerability patches.
Its dynamic functionality enables real-time analysis
while reducing data movement and associated latency
[2].

Beyond technical vulnerability, SQL injection and
XSS attacks also raise legal and forensic challenges.
Effective detection systems must support auditability
and maintain a clear chain of custody for logged
events, since these logs may later be used as evidence
in breach investigations. Studies in digital forensics
emphasize that ML-based detectors must produce
interpretable outputs to ensure legal admissibility and
to verify how a detection decision was made [16].
These requirements highlight the need for approaches
that prioritize transparency and traceable linguistic
patterns rather than opaque model predictions.

Our proposed method that incorporates language
processing is necessary since it does not just sanitize
based off of individual characters. Traditional
sanitization defensive methods target each character at
a time, which can ignore important attack patterns.
Unlike the traditional, our defense trains the detector to
recognize patterns, not just characters. It is these
advanced patterns that are causing the SQLIA rates to
be so high, so having our defense target these types of
attacks will cause it to be the most efficient.

3. DEFENDING AGAINST SQLIA BASED ON
LINGUISTIC AND STRUCTURAL FEATURES

3.1. Threat Model

To clarify the scope of this work, we define the
threat model guiding our evaluation and system design.
We assume an adversary with the ability to submit
arbitrary input to any publicly accessible field on a web
application, including login pages, guestbook forms,
and general text-based inputs. The attacker is capable
of crafting both known and mutated SQL injection
payloads, including tautology-based injections, UNION-
based data extraction, Boolean and error-based
enumeration, and time-delay payloads. We also
assume that the attacker can obfuscate these payloads
through encoding, comment insertion, spacing
manipulation, or character substitution to bypass naive
string-matching defenses. We acknowledge that a fully
adaptive adversary may attempt gradient-free or
reinforcement-based evasion strategies targeting the
model’s n-gram representations.

46 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Geiger and Luo

The application environment is assumed to operate
under typical web-stack conditions: an Apache2 server,
a relational backend database, and PHP-based form
handling, all of which process user-supplied input prior
to sanitization. We assume no direct access to server
configuration files, file systems, or administrator
credentials. Additionally, we assume that network-level
protections may be in place but cannot be solely relied

upon to prevent application-level SQL injection
attempts [6].

Our model also considers potential bypass
strategies. These include adversarially modified

payloads designed to evade ML-based detectors
through syntactic variation; hybrid payloads combining
SQL and HTML/JavaScript fragments; and low-and-
slow attack strategies where an adversary distributes
attempts to avoid pattern-based thresholds [17]. By
explicitly modeling these capabilities, our approach
evaluates not only whether the system detects known
SQL threats, but also whether it generalizes to
mutated, encoded, and behaviorally atypical payloads.

This threat model informs the design of our defense
by emphasizing explainability, linguistic structure
detection, and forensic traceability-features that
support not only technical detection but also incident
reconstruction and accountability requirements in
security and regulatory contexts.

3.2. Motivation

While our implementation describes the practical
components of the detector, the core contribution of
this work lies in the conceptual shift from character-
based sanitization to linguistic pattern modeling. By
focusing on structural and semantic properties of attack
language-rather than on individual tokens our approach
reframes SQLIA defense as a language classification
task. This conceptual reframing is critical because it
enables explainability, facilitates forensic traceability of
malicious patterns, and offers greater adversarial
robustness compared to purely syntactic or statistical
models.

As one can see, there are a variety of approaches
when performing a SQLIA, along with a matched
variety of defenses. Many of the preexisting ones,
however, are designed off of static algorithms that are
typically centered around individual human language
characters or query decision trees. Some defenses do
use the hybrid approach of combining the machine
learning aspect to spot certain attack phrases. This

type of work has inspired the type of defense we look
to improve on through this research. Given the rapid
growth of Al capabilities, enhancing existing defensive
strategies with Al offers one of the most promising
solutions to SQLIA vulnerabilities.

In order to maximize the existing defensive
strategies, our proposed idea to counter SQL injection
attacks would be to train automated intelligence to
detect attack language, errors, and common attack
techniques. As previously mentioned in the other
sections, there are a large variety of ways to conduct a
SQL injection attack. In order to narrow the focus of
this Al research, we looked at the most recent large-
scaled attacks to determine which methods were the
best to focus on. Cross-scripted sites, better known as
XSS attacks, rely on any input form within a website to
carry out their attacks and were the method behind the
Resume Looters attacks on over 65 websites in 2023
that gave access to over 2 million users’ information
[18]. The cross-site scripting attacks are especially
dangerous because of the ubiquity of search bars,
suggestion boxes, and comment threads on modern
websites.

3.3. Language Processing Incorporated Defense

3.3.1. Overall Logic

The innovation of out proposed method specifically
comes from the language processing approach in
comparison to ftraditional sanitization defenses. As
most of those sanitizers only examine singular
characters, our language processing aspect focuses on
identifying specific patterns post-vectorization. This will
produce higher accuracy rates as SQLIAs are
becoming more advanced then the brute-force
methods that were originally most popular.

The idea of our defense is to first create a training
file to teach the language processor to treat numerical
vectors and regular expression strings. This would
prepare the language processor while we also look to
create connections through a server to the database.
By running benign and malicious text files through a
runner file, we could test our new language processor.
Through the server, it would send the prediction values
and store them in the database. After the testing, we
would label each payload with its either benign or
malicious origins so that the accuracy rates, true
positives, true negatives, false positives, and false
negatives could be calculated. The flow chart in Figure
1 depicts this process.

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 47

Tokenize: break down
string to smaller parts

Inputs >

v ,

Change raw strings into
numerical vectors

Have heuristic fallback
for time efficiency

y

Calculate threshold <

< Train language
for predictability

processor

Y

Y

Test detector to

I Y -
Results Outputs i

Figure 1: The workflow of defensive detection pipeline
showing the transformation of raw input into tokenized,
numerical vectors, which then go through threshold
calculations. Each stage reflects how the model extracts
linguistic cues associated with malicious intent, enabling
automated identification of SQL injection attempts.

3.3.2. SQL Map and Payloads

To establish a baseline understanding of SQL
injection payload behavior, we examined preexisting
educational tools and intentionally vulnerable web
applications commonly used in cybersecurity research.
Resources such as Pacheco’s SQL injection lab and
the Damn Vulnerable Web Application (DVWA) allowed
us to observe how automated tools and manual
payloads interact with poorly secured database
environments [19] (see Appendix A for implementation
details). These environments provided controlled
conditions in which we could analyze common attack
patterns, successful payload structures, and the
conditions under which injections bypass or fail against
implemented safeguards. This exploratory phase
informed our later design choices by clarifying which
payload characteristics are consistently exploitable and
which defensive mechanisms are most easily
circumvented.

We also used DVWA to study reflected and stored
cross-site scripting behaviors, comparing how different

security levels affected detection success and failure.
By executing repeated payload loops through a
Python-driven interface, we evaluated the reliability and
repeatability of common attack vectors. These insights
guided the refinement of our detector by highlighting
which linguistic and structural patterns most reliably
indicate malicious intent.

3.3.3. Building a Test Webpage for Baseline
Defense

After experimenting with existing testing tools, we
constructed a deliberately vulnerable “guestbook”
webpage to better observe how SQL injection payloads
behave in a controlled environment. The page
consisted of a basic name-and-message input structure
connected to a small MySQL backend. We then
executed a curated set of payloads against the page
using a Python script, allowing us to empirically confirm
which attack types reliably bypassed its minimal
protections. These results established a baseline
vulnerability profile to inform the design of our defense.

With this profile in place, we reversed our
perspective and began hardening the page against the
same categories of attacks. Initial modifications
focused on server-side sanitization to mitigate common
XSS-related behaviors, such as the use of special
characters. A simplified example is shown in Figure 2,
which demonstrates how escaping user-supplied
content prevents script injection. Additional logging
functionality was added to record all incoming payloads
within a MySQL database, enabling later analysis and
supporting forensic traceability.

echo "<p>" . htmlspecialchars ($rowl[’
name’], ENT_QUOTES, ’UTF-8’)

": " . htmlspecialchars (Srow[’

message’], ENT_QUOTES, ’'UTF-8') "</p>";

Figure 2: lllustrates the first layer of defense in the SQL
injection workflow by preventing executable script tags or
encoded payloads from being rendered, an example shown
with htmlispecialchars

Code snippets like 2 help catch simple attacks in
order for us to develop a more advanced defense. The
PHP code was also modified to add a logging function
that recorded every payload into a pre-configured
MySQL database (more implementation details in
Appendix B).

To extend the defense beyond basic sanitization,
we incorporated machine-learning techniques capable
of distinguishing natural language from malicious input

48 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Geiger and Luo

patterns. Representative high-risk phrases and
structural features from common SQLIAs such as
comment injections, time delays, traversal sequences,
external resource calls, and encoded characters were
seeded into the model’s training set to support pattern
acquisition. The system then applied a supervised
learning pipeline using TF-IDF character n-grams and
logistic regression, coupled with threshold optimization
based on F1 and precision scores [17]. This approach
allowed the model to learn generalizable linguistic
signatures of SQL injection attempts rather than relying
on fixed string matching.

Our adaptive threshold was selected to balance
precision and recall, but it would benefit from further
empirical grounding. Future work should include
studies comparing static, percentile-based, and
dynamic thresholds to quantify how each impacts false-
positive rates and classifier stability. This would provide
a more formal justification for the chosen thresholding
strategy and improve the model's reliability in
operational settings.

3.3.4. Python Coding

When running the Python files, we chose to do so in
a virtual environment through the Linux command lines
in order to protect the files on my device. From there,
we were able to open an Uvicorn server for the files
and database to work in conjunction with one another.
In a separate terminal, we were able to test the code by
running "curl" functions that fit under the "benign" or
"attack" category in which a prediction of 0 or 1,
respectively, would be outputted. For example, a
payload of an alert script attack returned a "1"
prediction, representing an attack.

Although the system is implemented using several
Python modules working together, the underlying idea
is straightforward: each stage of the pipeline transforms
raw input into increasingly meaningful linguistic
representations. Training builds the model’s
understanding of benign versus malicious structure,
serving exposes the model to real-time queries, and
evaluation measures how reliably these learned
patterns generalize. The conceptual modularity is more
central than the specific coding sequence, because it
shows how linguistic intelligence can be layered onto
traditional SQL defenses.

From there, we created a handful of Python files
that when all have been ran, produce the accuracy
results of our tests. The "train_detector.py" file created
took in both the benign and malicious files and used

that data and its length to calculate a threshold of
probability to use in determining whether it was 0
(benign) or 1 (malicious). It also included other
precautions that help filter the code through regex
language or char n-grams, which will be discussed in
the results portion. Next, we have a
"serve_detector.py" file that configures the database
and connects it to the MySQL application. It grabs the
adaptive threshold from the "train_detector.py" file and
also starts the FastAPI application within the Uvicorn
server. From there, its make_prediction() function uses
a vectorizer, and a heuristic fallback, to calculate a
prediction probability and ultimately, a prediction score
of 0 or 1. Finally, it logs the prediction and score to the
database. Another important file includes "labels.py"
that after configuration, logs the original category of
"benign" or "malicious" to the database so that the
"calculate.py” file can pull the original assignment in
comparison to the predicted assignment to produce the
accuracy rate, true positive, false positive, true
negative, and false negative values.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental logic of our system followed a
modular pipeline consisting of data preprocessing,
model training, and prediction validation. The raw
payloads from both benign and malicious sources were
first cleaned and normalized before being passed into
the language-based detection model. Each payload
was evaluated using adaptive thresholds to
dynamically determine classification probabilities. This
logical flow ensured that each phase of processing
could be tested and validated independently before
integration. By designing this in a modular development
cycle, it ensured that each different part could be
worked on independently of the progress of other parts.
Towards the end of the development cycle, all parts did
not to be synchronized to create stable connections in
the sequence flow, but we were able to make changes
as necessary to each parts individually in the process.

The experiments were conducted on an Ubuntu
Linux-based operating system, with all the code being
written in Python 3.13 through the Visual Studio Code
software. In terms of other tools, we used MySQL as
the Linux-based database, FastAPI as the framework,
and Uvicorn as the Python-based server. The main
dependencies included NumPy, Pandas, Joblib, and
Scikit-learn for data processing and model training. The
dataset consisted of 39,967 payloads evenly distributed
between benign and malicious samples.

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 49

For model configuration, we tested multiple
preprocessing strategies including tokenization,
character n-grams, and vectorization to improve input
representation. The adaptive threshold mechanism was
initialized to update based on the ratio of benign to
malicious samples per batch. All outputs were logged
and visualized to track improvements in accuracy, true
positives, true negatives, false positives, and false
negatives over iterations

4.1. Results Analysis

Evaluation samples were generated to simulate the
attacker capabilities described in our threat model,
including obfuscation techniques and syntactic
mutation strategies. Within our generated files, all text
was lowercased, Unicode-normalized, stripped of null
bytes, and tokenized using a reproducible,
deterministic preprocessing pipeline implemented with
version-pinned Python libraries [20]. This
preprocessing step ensured that every sample could be
regenerated and re-evaluated in subsequent
experiments. For training, we applied TF-IDF character
n-gram extraction followed by logistic regression with
fixed random seeds for deterministic results. Model
evaluation was conducted using 5-fold cross-validation,
allowing us to report metrics (precision, recall, F1-
score) rather than relying on a single experimental run.
These methodological controls were incorporated to
support reproducibility, reduce dataset bias, and
provide robust evidence for the model’s performance.

In the initial trial run, the model achieved an
accuracy rate of only 1.65%, with 0 true positives, 304
true negatives, 304 false positives, and 0 false
negatives. Manual curl tests revealed that the main
issue stemmed from data transfer and conversion. We
investigated the most efficient methods in modern
machine learning and found that our missing
component was vectorization, which is turning raw
textual data into numerical vectors that the detector can
more easily process [21]. Implementing vectorization
reduced the number of null values from unprocessable
payloads. We also imported NumPy, a Python
numerical library that supports high-level mathematical
computing, to further optimize processing [22]. This
original test run and the following results from the
implementation details in this section are depicted in
Figure 3.

Rather than relying solely on surface-level token
comparisons, our system models SQL input through
multiple layers of linguistic representation.

Vectorization captures higher-order statistical

characteristics, tokenization maps human-readable
structure, and the heuristic fallback provides
interpretable, rule-based support. Together, these
layers illustrate how linguistic structure-not simply
string matching defines malicious intent [23].

100.00%

75.00%

50.00%

25.00%

0.00%

Figure 3: The accuracy rate percentage that resulted from
running each step outlined in the implementation details,
graphed to show its development.

After this change, we received an accuracy rate of
43.22%, 0 true positives, 10034 true negatives, 0 false
positives, and 13180 false negatives. This revealed
that during tokenization debugging, the threshold had
shifted, causing the model to classify all inputs as
benign (score of 0). The adaptive threshold plays a
conceptual role by enabling the detector to calibrate
itself to the underlying distribution of benign versus
malicious patterns. Instead of using a static boundary,
the model learns how uncertainty manifests within its
linguistic feature space, which is essential in
environments where attack patterns evolve
unpredictably [24]. We also included baseline code for
char n-grams, that help in language processing models
detect certain language patterns [10]. We also
observed that roughly 33% of payloads were excluded
from the final counts because they were labeled as null
values. To fix this, we added a heuristic fallback to
catch certain phrases or character patterns that signify
a benign or malicious payload [17]. By implementing
this regex method, we were able to decrease the
amount of unprocessable payloads and increase the
total count.

With the addition of an adaptive threshold and regex
code portions, our accuracy rate increased to 57.94%,
13150 true positives, 300 true negatives, 9734 false
positives, and 30 false negatives. Further debugging
identified several type and attribute errors that

50 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Geiger and Luo

prevented proper integration between components of
the detector. We also reviewed the text files
themselves to ensure that each payload was the
category it was actually supposed to be. This
debugging was crucial in aligning all the correct
database and function names to each part of the
detector files. Although the classifier performs well on
unmutated test payloads, its performance may degrade
under adversarial mutation, a common challenge for n-
gram-based NLP models.

20000

15000

10000

5000

False Positives

True Positives

True Negatives False Negatives

Figure 4: Final model performance metrics summarizing the
classifier’s ability to correctly distinguish benign and malicious
queries. These results provide insight into detection reliability
and highlight areas where further feature refinement or
ensemble approaches could improve operational
performance.

Our final produced values were an accuracy rate of
83.85%, 18349 true positives, 10132 true negatives,
4919 false positives, and 567 false negatives. This
elevated false-positive rate suggests that, although the
model captures malicious structure, it may also be
oversensitive to benign queries that share surface-level
linguistic features. Although our system did not achieve
100% accuracy, we observed significant progress with
each retraining phase. Moreover, we found that 67% of
web applications are vulnerable to SQL injection
attacks [3]. As we refer to the "vulnerable websites",
this accounts for the estimated 67% accounted for via
the source. When adding our total number of payloads
to get 39967 of them, we can divide the amount of false
negatives by that sum to see how many malicious
attacks are not caught and are flagged as a negative
(0, benign). This is displayed in Figure 4.

To most effectively and objectively display our
results, we chose to report the precision, recall, and F1
score. These metrics are commonly used in the
machine learning academic community to measure

categorization models efficiency. They are especially
important in our dataset since they are designed to
cater towards imbalanced data sets, so we are actively
fighting against any possible bias by choosing these
metrics [25].

For our measure of precision, we calculated the true
positives divided by the sum of the true positives and
false positives to get a final value of .789 (shown in
equation 1). The accuracy rate for all implementation
steps and in Table 1 are defined by the total number of
correct predictions divided by the total number of
attempts.

TP

TP+FP (1)
18349 =(0.789

~ 18349 + 4919

Precision =

For our measure of recall, we calculated the true
positives divided by the sum of the true positives and
true negatives to get a final value of .97 (shown in
equation 2).

TP

TP+ FN

3 2
_ 18349 097 (2)
18349 + 567

Recall =

For our measure of F1, we calculated the product of
2 and precision and recall divided by the sum of
precision and recall to get a final value of .87 (shown in
equation 3).

2 x Precision x Recall

Precision + Recall 3
_2X0789x 097 _)

0.789 4 0.97

F1

Overall, our precision metric of 0.789 may have
been relatively smaller in comparison to the recall
metric, but in the general concept of machine learning,
it holds above a 0.75 success threshold. The recall
value was very high, with a score of 0.97. Moreover,
the F1 score that balances both the other metrics held
at 0.87, another relative success.

4.2. Comparison with Existing Defenses

In order to prove the effectiveness of our defensive
system further, we ran another experiment as a
comparison. Although there are limited direct input
sanitization Linux code available, we implemented a
baseline sanitizer [7]. This sanitizer was designed to
only match characters with malicious examples and not
utilize the language processing capabilities of our

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 51

defense to demonstrate its novelty and importance. It
also excludes the tokenization and vectorization
features needed in our algorithms, solely taking in raw
text. The comparison in this study is intentionally
limited to a baseline sanitizer due to the restricted
availability of more advanced defensive tools such as
WAF-based or hybrid ML systems [9]. This constraint
reflects the research context rather than the theoretical
scope, and expanding the comparison set remains an
important direction for future work.

29.0% \

71.0%

Unable to be handled by traditional [7] Il Handled by Traditional [7]

Figure 5: Payloads traditional defense [7] successfully
handled out of the total payloads successfully handled by our
defense.

Due to this, only 29% of the original benign and
malicious payloads were even able to be processed by
the baseline sanitizer (11607 of the 39967). This shows
that even before executing the program, there is an
extreme deficit to what our defense can process versus
the traditional defense, as reflected in Figure 5.

8000

6000

4000

2000

True Positives

True Negatives False Positives False Negatives

Figure 6: Final values of true positives, true negatives, false
positives, and false negatives from the traditional baseline
sanitizer [7].

As a result of running the baseline sanitizer, we
received an accuracy rate of 46.06%, 333 true
positives, 5013 true negatives, 4 false positives, and
6257 false negatives displayed in Figure 6. From this
experiment, we can deduce that there is an imbalance
in being able to process benign versus malicious
payloads in the traditional sanitizer. Moreover, the false
negative rate was relatively high compared to the other
results. We also represented this data with the
precision, recall, and F1 metrics from our defense’s
results for direct numerical comparison [25].

For our measure of precision, we calculated the true
positives divided by the sum of the true positives and
false positives to get a final value of .988 (shown in
equation 4).

TP

TP+ FP
333 (4)

= = 0.988
333 +4

Precision =

For our measure of recall, we calculated the true
positives divided by the sum of the true positives and
true negatives to get a final value of .051 (shown in
equation 5).

TP

Recall = 757y (5)

333

-2 _go51
333+ 6257 ?

For our measure of F1, we calculated the product of
2 and precision and recall divided by the sum of
precision and recall to get a final value of .097 (shown
in equation 6).

2 x Precision x Recall

F1=
Precision + Recall
2 % 0.988 x 0.051
_ 2 U2 X UL _ o7 (6)

0.988 + 0.051

Although the traditional sanitizer had a higher
precision rate, its capability to process payloads, recall
metric, and F1 metric were all lower than our defensive
system. When implementing our defense instead, the
accuracy rate saw a 38% increase from 0.46 to 0.84 as
shown in Table 1. The recall metric increased
significantly from the traditional defense’s 0.051 to our
0.970, as shown in Table 2. The F1 metric increased
by significantly from the traditional defense’s 0.097 to
our 0.870, as shown in Table 2. The precision rate of
the traditional defense (0.988) was 20.04% better than
our defense (0.789), which could be a result of the
lesser payloads processed.

52 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Geiger and Luo

Table 1: The Comparison of the Accuracy Rate between
our Method and the Existing Method [7]

Our Proposed Method | Existing Method [7]

Accuracy 0.84 0.46

Table 2: The Comparison of our Proposed Method with
Existing Method [7] in Terms of Precision,
Recall and F1 score

Our Proposed Method | Traditional Method [7]

Precision 0.789 0.988
Recall 0.970 0.051
F1 0.870 0.097

Although the model demonstrates strong recall, the
precision score (0.789) indicates that a portion of
benign traffic is still being misclassified as malicious.
To improve precision in future iterations, we would
utilize expanded feature engineering, ensemble
methods that combine linguistic and statistical
classifiers, and contextual models that incorporate
surrounding query history or user-behavior patterns
[26]. Such enhancements may produce a more
discriminative boundary between legitimate user input
and evolving attack payloads.

These results highlight not only the performance
gains of our implementation but also the broader
conceptual value of treating SQL injections as linguistic
phenomena. Models grounded in character n-grams
and structural cues can detect malicious intent that
eludes traditional syntactic filters. More importantly, the
approach provides interpretable signals identifiable
linguistic patterns that benefit incident response, digital
forensics, and policy-driven audit requirements.

5. DISCUSSION AND LIMITATIONS

Although our tests used manually created
vulnerable webpages and controlled payload loops,
these experiments served primarily as a conceptual
sandbox rather than a full replication of production
systems. As such, external validity must be considered.
Real-world SQL injection attempts involve higher query
variability, more complex layers, multiple database
engines, and attacker strategies that evolve over time
[6]. While our linguistic defense generally worked well
across the payload classes we tested, further
evaluation in high-volume environments is necessary to
assess robustness against novel or unseen attack

patterns. Future work will incorporate logs from
enterprise-scale web applications, real-time monitoring
pipelines, and simulations to validate how the detection
model performs under operational load and adaptive
pressure.

Being that the research was completed on one
single laptop, its computing capabilities were lesser in
comparison to a company’s research that can utilize
multiple devices for increased payloads and larger
calculations. One shortcoming of our study is the
limited dataset size used to test our processing
defense. Although over 37,000 payloads may seem
extensive, the model's performance could likely
improve with a larger and more diverse dataset. A
greater variety of SQL injection patterns would enable
more robust training and finer tuning of the detection
thresholds.

Additionally, while our results demonstrated high
true positive rates and low false negative rates, the
ratio of true negatives to false positives could be
improved. This indicates that many benign queries
were mistakenly classified as malicious. Although false
positives are not inherently damaging, they can
increase operational overhead by requiring manual
verification and potentially disrupting normal system
functionality. A further limitation of our approach is its
vulnerability to adversarial machine-learning attacks
specifically crafted to exploit weaknesses in linguistic or
character-level n-gram models. Because the classifier
relies heavily on character-sequence statistics, an
attacker could generate adversarial payloads that
preserve the semantic meaning of an injection while
subtly altering its character distribution to evade
detection. These risks underscore the need for future
work incorporating adversarial training, ensemble
representations, or hybrid symbolic constraints to
ensure robustness against deliberately evasive
injection patterns.

6. CONCLUSION

This paper discusses the importance of ingraining
language processing techniques into pre-existing SQL
defenses for preventing SQL injection attacks. Through
our extensive research and practice, we were able to
train the detector to generate predictions based on its
learned algorithms. It was through example codes of
benign and malicious code that we were able to train
the detector to make predictions based off of its
algorithms. Those predictions then used dynamic
thresholds to calculate whether their probability would

Linguistic Method for SQL Injection Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 53

be classified as an attack or not, which was
demonstrated through accuracy rates, showing it
outperformed a one-dimensional sanitization defense.
SQLIA defenses that provide transparent reasoning are
increasingly important for meeting legal expectations
around explainability in automated decision-making
systems.

The model's tendency to over-flag benign input
limits its immediate operational viability, particularly in
environments where database availability and SOC
efficiency are critical. Future work should explore
threshold calibration, dynamic confidence scoring, and
hybrid architectures that pair interpretable linguistic
signatures with secondary verification layers. Reducing
false-positives while maintaining an ability to interpret
and robustness will be crucial for transitioning this
research into a deployable enterprise-scale defense.

Obtaining the final accuracy rate of 83.85%, a
precision score of 0.789, a recall score of 0.97, and the
F1 score of 0.87 compared to the metrics of the
traditional input sanitizer shown in our comparison
experiments proved the effectiveness of our defense.
Not only does integrating the language processor,
tokenizer, and vectorizer into sanitization practices
increase the success metrics, but it also increases its
payload processing capabilities. The model’s ability to
produce traceable linguistic indicators of malicious
input offers value for digital forensic workflows by
helping investigators reconstruct attack sequences. In
future work, we would look to train our defense with
even more complex payloads and expand its
algorithmic practice. We could also look to gain access
to other pre-existing defense software to further
compare the strengths and weaknesses of each.

APPENDIX

Experimental
Exploration

Testbed and Preliminary Attack

A controlled SQL injection testbed was constructed
using publicly available educational resources,
including Pacheco’s Creating a Vulnerable SQL
Injection Lab for SQLMap Practice. The files were
deployed within an isolated Linux virtual environment
configured with Apache2 and MySQL to ensure
operational safety and containment [20]. Initial
configuration required minor adjustments to PHP page
dependencies and environment permissions, after
which SQLMap scans reliably enumerated available
databases and demonstrated common injection

vectors. These exploratory exercises provided
foundational insight into typical payload structures and
attack patterns frequently exploited by automated tools.

Development of Custom Vulnerable Pages and
Baseline Defense Prototype

To complement the use of established testing
environments, we constructed a minimal custom
“guestbook” application designed to model a typical
input-database workflow targeted by SQL and XSS
attacks. The interface consisted of a guest name field
and message field, backed by a MySQL database
created within the Linux environment. This simplified
configuration allowed us to observe how unprotected
input is stored, rendered, and subsequently exploited.

To evaluate the application’s baseline vulnerability,
we executed a Python-based payload harness that
iterated through a structured list of common SQLIA and
XSS strings. The script recorded which inputs were
successfully executed or injected into the page,
providing a clear profile of the weaknesses present in
the unsanitized version of the system. These results
guided the subsequent design of defensive features.

A preliminary defensive layer was introduced by
integrating server-side sanitization into the PHP
rendering logic. This included the use of
"htmlispecialchars" 2 to neutralize characters frequently
used in reflected and stored XSS attacks. Additional
logging statements were added to capture raw user
input in a dedicated MySQL table, enabling later

comparison between attempted and mitigated
payloads.

REFERENCES

[1] Jemal |, Cheikhrouhou O, Hamam H, Mahfoudhi A. Sql

injection attack detection and prevention techniques using

machine learning. International Journal of Applied
Engineering Research 2020; 15(6): 569-580.
[2] Islam S. Future trends in sql databases and big data

analytics: Impact of machine learning and artificial
intelligence. Available at SSRN 5064781, 2024.
https://doi.org/10.2139/ssrn.5064781

[3] Mulki R. Sql injection isn’t dead. here’s why. Jul 2025.
[Online]. Available: https://medium.com/@rizgimulkisrc/sql-
injectionisnt-dead-here-s-why-aa4b6657f5¢3

[4] Crespo-Martinez |A, Campazas-Vega A, Guerrero-Higueras
AM, Riego-DelCastillo V, Ivarez-Aparicio CA, Fernandez-
Llamas C. Sql injection attack detection in network flow data.
Computers & Security 2023; 127: 103093.
https://doi.org/10.1016/j.cose.2023.103093

[5] Gadde H. Integrating ai into sql query processing:
Challenges and opportunities. International Journal of
Advanced Engineering Technologies and Innovations 2022;
1(3): 194-219.

54 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 Geiger and Luo

[6] Alghawazi M, Alghazzawi D, Alarifi S. Detection of sql [17] Kapoor M, Fuchs G, Quance J. Rexactor: Automatic regular
injection attack using machine learning techniques: a expression signature generation for stateless packet
systematic literature review. Journal of Cybersecurity and inspection. in 2021 |IEEE 20th International Symposium on
Privacy 2022; 2(4): 764-777. Network Computing and Applications (NCA). IEEE 2021; pp.
https://doi.org/10.3390/jcp2040039 1-9.

[71 Barlas E, Du X, Davis JC. Exploiting input sanitization for hitps://doi.org/10.1109/NCA53618.2021.9685959
regex denial of service. in Proceedings of the 44th [18] Yeboah PN, Kayes A, Rahayu W, Pardede E, Mahbub S. A
International Conference on Software Engineering 2022; pp. framework for phishing and web attack detection using
883-895. ensemble features of self-supervised pre-trained models
https://doi.org/10.1145/3510003.3510047 Authorea Preprints 2025.

[8] Das D, Sharma U, Bhattacharyya D. Defeating Sql injeCtiOn httDS//dOlOrq/1036227/teCth|V17360336221995515/V1
attack in authentication security: an experimental study. [19] Priyanka AK, Smruthi SS. Webapplication vulnerabilities:
International Journal of Information Security 2019; 18(1): 1- Exploitation and prevention. in 2020 Second International
22. Conference on Inventive Research in Computing
https://doi.org/10.1007/s10207-017-0393-x Applications (ICIRCA). IEEE 2020; pp. 729-734.

[9] Appelt D, Nguyen CD, Briand LC, Alshahwan N. Automated httDS//dOlOrq/101109/|C|RCA4890520209182928
testing for sql injection vulnerabilities: an input mutation [20] Creating a vulnerable sql injection lab for sqlmap practice.
approach. in Proceedings of the 2014 International [Online]. Available: https://www.linkedin.com/pulse/creating-
Symposium on Software Testing and Analysis 2014; pp. 259- vulnerablesql-injection-lab-sglmap-practice-jose-pacheco-
269. ej3nc/
hitps://doi.org/10.1145/2610384.2610403 [21] Cui ED. Vectorization: A Practical Guide to Efficient

[10] Wieting J, Bansal M, Gimpel K, Livescu K. Charagram: Implementations of Machine Learning Algorithms. John Wiley
Embedding words and sentences via character n-grams. & Sons, 2024.
arXiv preprint arXiv:1607.02789, 2016. https://doi.org/10.1002/9781394272976
https://doi.org/10.18653/v1/D16-1157 [22] Gupta P, Bagchi A. Introduction to numpy. in Essentials of

[11] Khan JR, Farooqui SA, Siddiqui AA. A survey on sql injection Python for Artificial Intelligence and Machine Learning.
attacks types & their prevention techniques. Journal of Springer 2024; pp. 127-159.

Independent Studies and Research Computing 2023; 21(2): https://doi.org/10.1007/978-3-031-43725-0_4
1-4.) [23] Choo S, Kim W. A study on the evaluation of tokenizer
https://doi.org/10.31645/JISRC.23.21.2.1 performance in natural language processing. Applied

[12] Alotaibi FM, Vassilakis VG. Toward an sdn-based web Atrtificial Intelligence 2023; 37(1): 2175112.
application firewall: Defending against sql injection attacks. https://doi.org/10.1080/08839514.2023.2175112
Future Internet 2023; 15(5): 170. [24] Thatkonda M, PK MK, Amsaad F. A novel dynamic
https://doi.org/10.3390/fi15050170 confidence threshold estimation ai algorithm for enhanced

[13] Sheng J. Research on sql injection attack and defense object detection. in NAECON 2024-IEEE National Aerospace
technology of power dispatching data network: Based on and Electronics Conference. IEEE 2024; pp. 359-363.
data mining. Mobile Information Systems 2022; 2022(1): https://doi.org/10.1109/NAECON61878.2024.10670627
6207275-, [25] Yacouby R, Axman D. Probabilistic extension of precision,
https://doi.org/10.1155/2022/6207275 recall, and f1 score for more thorough evaluation of

[14] Muhammad T, Ghafory H. Sql injection attack detection using classification models. in Proceedings of the first workshop on
machine learning algorithm. Mesopotamian Journal of evaluation and comparison of NLP Systems 2020; pp. 79-91.
Cybersecurity 2022; 2022: 5-17. https://doi.org/10.18653/v1/2020.eval4nip-1.9
https://doi.org/10.58496/MJCS/2022/002 [26] Zhou B. Optimized feature engineering for machine learning-

[15] Habib U. A survey on implication of artificial intelligence in based financial trend prediction. Available at SSRN 5734370.

detecting sql injections.

[16] Alorainy W. Ml-psdfa: A machine learning framework for
synthetic log pattern synthesis in digital forensics. Electronics
2025; 14(19): 3947.
https://doi.org/10.3390/electronics 14193947

Received on 22-10-2025 Accepted on 20-11-2025 Published on 04-12-2025

https://doi.org/10.65879/3070-5789.2025.01.05

© 2025 Geiger and Luo.

This is an open access article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium,
provided the work is properly cited.

