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Abstract: Securing omics datasets against tampering and misuse is essential for reproducible research and privacy. We
present a defense-in-depth framework that combines Ethereum smart contracts for tamper evidence, provenance, and
fine-grained access with a Long Short-Term Memory (LSTM) intrusion detection system that models event sequences to
flag abnormal behavior. Raw omics files remain off-chain; their SHA-256 digests and permissions are recorded on-chain.
Authorized consumers obtain contract-mediated tokens to fetch encrypted data, recompute hashes, and verify integrity.
The intrusion detection system (IDS) ingests blockchain transactions and storage access logs in sliding windows to
detect bursts, probing, and insider over-access. We implement the system on a permissioned Ethereum network and
evaluate it with a simulated case study using public gene-expression files and scripted attacks. All post-registration data
modifications were detected at verification time (100% integrity detection). Behavioral attacks were identified with 95%
precision and 90% recall, reducing false alarms to 1% of windows and outperforming a rules-only baseline (80%
precision, 75% recall). Transaction latency and resource costs remained modest. These results demonstrate a practical
path to trustworthy omics sharing that unites cryptographic immutability with monitoring. Our design supports consent
enforcement and lays groundwork for extensions such as Merkle-root batching, key rotation, and federated or

transformer-based detectors.
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1. INTRODUCTION

Omics datasets—spanning genomics,
transcriptomics, proteomics, and related modalities—
have become indispensable to modern biomedicine.
Population-scale sequencing and high-throughput
profiling feed discovery pipelines for disease risk
prediction, target identification, and precision
therapeutics [1]. These data are inherently sensitive: a
genome encodes immutable personal attributes and
familial relationships, and derived expression profiles
may reveal disease states or treatment histories [2]. As
repositories grow in size and value, so does the
incentive for adversaries to exfiltrate, corrupt, or subtly
manipulate records [3]. Beyond privacy harms, integrity
failures have scientific consequences: if files are
altered or mislabeled without detection, downstream
analyses can become irreproducible or misleading,
eroding trust in published findings and clinical
translation [4].

Securing omics data is uniquely difficult because it
is rarely confined to a single institution. Multi-site
consortia, biobanks, and research networks routinely
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share subsets of samples under complex consent
terms [5]. Traditional security architectures center on a
single administrative domain: a database guarded by
perimeter defenses, access-control lists, and
application logs. While familiar and operationally
convenient, this model exhibits  well-known
weaknesses. Centralized administrators can be
coerced or compromised; logs can be altered or
selectively deleted; and “authorized” users can still
behave maliciously by over-accessing or siphoning
data [3]. Furthermore, classic systems often lack
strong, cryptographic guarantees that a file retrieved
today is exactly the one that was originally registered.
In a domain where single-nucleotide changes matter,
probabilistic or best-effort checks are insufficient [6].

Blockchain  technology offers a compelling
complement. A blockchain provides an appendonly,
tamper-evident ledger replicated across independent
nodes. On Ethereum, smart contracts encode access
policies and emit immutable event trails; cryptographic
hashes recorded on-chain act as durable fingerprints of
off-chain artifacts [7-9]. If a retrieved file’s hash
diverges from the committed digest, even by a single
bit, verification fails and the discrepancy is auditable by
all participants [6,7]. For healthcare contexts, a
permissioned or consortium Ethereum network can
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preserve these guarantees while offering operational
control and predictable costs [10,11]. Crucially, large
omics files remain off-chain in secure storage; only
compact metadata, hashes, and permissions are
anchored on the ledger to preserve privacy and
scalability [8,9].

Yet blockchains alone do not solve behavioral
security. A smart contract will faithfully grant access to
a caller with valid credentials; it does not judge whether
that caller’s pattern of activity is suspicious. Many real
incidents exploit exactly this gap: credential theft,
insider abuse, or automated scraping that stays within
nominal rate limits [3]. Detecting such misuse requires
modeling sequences over time—who accessed what,
how often, and in which order—and distinguishing
legitimate research workflows from anomalous bursts,
probing, and lateral movement. Signature-based
intrusion detection struggles with novel attacks and
evasion. In contrast, sequence models from deep
learning—particularly Long  Short-Term  Memory
(LSTM) networks—are effective at learning temporal
dependencies and flagging deviations without hard-
coded rules [12,13].

This work unifies these two paradigms into a
defense-in-depth framework for secure omics sharing.
We propose an architecture in which data providers
store encrypted files in off-chain storage and commit
their SHA-256 digests, provenance metadata, and fine-
grained permissions to an Ethereum smart contract
[6,7]. Data consumers query the contract to discover
datasets, obtain contract-mediated authorization
tokens, retrieve the corresponding objects from
storage, and verify integrity by recomputing hashes. In
parallel, an LSTM-based intrusion detection system
(IDS) ingests a consolidated stream of blockchain
transactions and storage access logs (e.g., fetch
events, volumes, timings). Using sliding windows over
these event sequences, the IDS outputs anomaly
scores that drive alerts and automated mitigations such
as throttling or temporary quarantine [12,13]. The
ledger enforces what is allowed and preserves an
incorruptible audit trail; the LSTM learns how normal
looks and spots misuse that otherwise slips through.

Our design goals reflect practical constraints faced
by research consortia. First, strong integrity and
provenance: every file must be verifiable against a
public, immutable commitment, enabling reproducible
analyses and auditability [6—9]. Second, fine-grained,
consent-aware access control: smart contracts should
express per-dataset or per-cohort permissions and

support revocation and expiry, aligning with evolving
consent or data-use agreements [5,10]. Third, early
anomaly detection with low false-alarm rates:
operational teams cannot respond to constant noise;
the IDS must prioritize precision while retaining
sensitivity to diverse attack modes [12,13]. Fourth,
operability and cost proportionality: transactions must
complete in seconds, not minutes, with gas costs
compatible with research workloads; performance on
permissioned Ethereum is compatible with typical
research cadence [11]. Fifth, privacy preservation: raw
omics never appear on-chain; identities and logs are
pseudonymized where feasible; encryption at rest and
in transit is assumed, with keys released only to
authorized principals [5,8,9]. Finally, governance and
recoverability: administrators should be able to pause
contracts during incidents, rotate keys, and map
institutional identities to wallet addresses without
centralizing all power [10].

We target a permissioned Ethereum network, i.e., a
consortium blockchain where participating institutions
operate validator nodes and membership is governed
by policy. Compared to public chains, permissioned
networks provide predictable latency, private
membership, and operational control while retaining
append-only, tamper-evident logs and smart-contract
programmability. This setting aligns with multi-
institution omics workflows that require governed
participation and auditability without public write
access. We present a concrete instantiation of this
framework. On the blockchain side, a DataRegistry
contract records dataset digests and URIs, manages
an access-control list per item, and emits events on
registration and access decisions [7-9]. We employ
role-based controls and pausability to reduce
administrative risk, and we discuss rate-limiting
patterns and event-driven gateways that deliver
decryption keys to authorized users [10]. On the
analytics side, the IDS represents each event as a
compact feature vector—event type, pseudonymous
user identifier, time bin, dataset reference, and simple
counts—then passes a rolling window to a two-layer
LSTM followed by a dense classifier; thresholds are
tuned on benign validation logs to bound false positives
[12,13].

To evaluate the approach, we emulate a realistic
consortium workflow using publicly available gene-
expression files as stand-ins for protected content.
Providers register datasets and assign permissions to a
small group of consumers who perform routine
analyses at human-scale cadence. We inject two
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classes of adversarial behavior. Integrity attacks
arbitrarily alter a subset of stored files after registration
to test whether verification at access catches every
modification. Behavioral  attacks simulate a
compromised account that attempts rapid, broad
retrievals beyond typical usage, and repeated requests
for unauthorized datasets to elicit denials. We contrast
our system’s detection capability with a baseline rule
set—fixed rate limits and simple counters—chosen to
reflect what many institutions can deploy with minimal
tooling.

The results, detailed later, show that the
cryptographic layer guarantees tamper evidence at the
point of use, while the LSTM discriminator substantially
improves detection quality over rules alone, producing
fewer spurious alerts without sacrificing sensitivity [11—
13]. Equally important, transaction latency and
throughput on a permissioned Ethereum network
remain compatible with research workflows, and the
IDS computes in sub-second time on commodity CPUs
[11,12]. While no single mechanism is sufficient against
all threats, the combination of immutable provenance
and learned behavior modeling markedly raises the bar
for attackers and increases operator confidence that
misuse will be visible and actionable.

Data Providers

(labs or sequencing Off-chain

This paper advances the discourse in two ways.
Conceptually, it frames omics security as the union of
data-centric guarantees and behavior-centric
monitoring and demonstrates that the two reinforce
each other when co-designed. Practically, it provides
an implementation  blueprint—covering  contract
interfaces, event schemas, and an IDS feature
pipeline—that others can reproduce and adapt. Our
aim is not to replace institutional controls or legal

agreements, but to supply cryptographic and
algorithmic scaffolding that makes those controls
verifiable  and  violations  observable  across
organizational boundaries.
2. METHODS
2.1. System Architecture

We designed a defense-in-depth system that

couples a permissioned Ethereum ledger for integrity,
provenance, and fine-grained access with a sequence-
aware intrusion detector that models how the platform
is used over time [15,16,35]. Data providers deposit
raw omics files into secure off-chain storage and
immediately commit a cryptographic digest plus
metadata and permissions to the chain. Data
consumers discover datasets and request access via
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Figure 1: System architecture. (1) Provider encrypts an omics object with AES-GCM and registers its SHA-256 commitment,
metadata, and permissions on the Blockchain (permissioned Ethereum). (2) Consumer requests an object from off-chain
storage only after obtaining authorization, using the storage pointer recorded on chain. (3) The consumer proves authorization
by presenting a smart-contract approval event to an off-chain key gateway, which verifies event inclusion/finality and then
releases a time-boxed, single-use decryption token. (4) Client retrieves the ciphertext, decrypts, hashes the plaintext, and
compares to the on-chain commitment (tamper evidence). (5) Blockchain events and storage access logs stream to the IDS,
which scores sliding windows and emits anomaly alerts to operators and an orchestration service (e.g., to throttle or quarantine).
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Table 1: Security Threats to Omics Data and Mitigations

Threat scenario

Risks in traditional systems

Mitigation in proposed framework

Data tampering (integrity attack)

Silent modification/corruption invalidates
analyses; no immutable reference to detect
changes.

On-chain SHA-256 commitments; client
verification rejects mis-matches; full audit trail
of revisions.

Unauthorized data access

Credential reuse or server compromise leaks
sensitive genomic data.

Smart-contract ACLs; wallet-based auth; event-
driven key release; non-permitted callers
denied and logged.

Insider misuse / excessive access

Authorized users over-download or share
improperly, coarse monitoring misses
atypical cadence.

LSTM IDS models normal per-user sequences;
flags bursts/atypical timing for early
intervention.

Brute-force / DDoS probing

Floods overwhelm endpoints; threshold-only
rules noisy.

On-chain rate limits + pausability; IDS detects
surges and triggers throttling/quarantine.

Database exploit

Direct dumps bypass application logs;
tampering/exfiltration remains covert.

Ledger-mediated, auditable retrievals; off-
ledger dumps fail hash checks; IDS observes
anomalous storage-access patterns.

Privacy and re- identification

Over-exposure of identifiers; weak consent
enforcement.

Fine-grained on-chain consent/ACLs; only
hashes/URIs on chain; optional dual-
chain/GDPR workflows; pseudonymized IDS
features.

smart contracts; if authorized, they retrieve encrypted
objects from storage and verify integrity by recomputing
the digest and comparing it with the on-chain
commitment.

In parallel, an analytics pipeline ingests blockchain
events and storage access logs, constructs feature
sequences, and feeds them to an IDS that models how
the platform is used over time to detect behavioral
anomalies. The ledger enforces what is allowed and
preserves an immutable audit trail; the LSTM judges
whether observed behavior matches learned patterns
of legitimate use [12,13,36].

2.2. Blockchain Component and Smart Contract
Design

The blockchain layer runs on a consortium
Ethereum network using proof-of-authority consensus
to achieve predictable latency and governance [15,16].
Participants transact from externally owned accounts;
validator nodes are operated by distinct organizations
in the consortium. The principal contract, DataRegistry,
exposes functions to register new objects, mutate per-
item permissions, check access, and verify digests.
Registration writes a stable identifier, the SHA-256
digest, a pointer to off-chain storage, and metadata
required for provenance. Access checks are performed
when a consumer calls the contract; successful
evaluation emits an approval event carrying a
reference to the object’'s decryption key, while denials
are logged to the same immutable trail. The contract is
hardened with role-based access control for

administrative operations, pausability for incident
response, and conservative state-change patterns to
avoid reentrancy. Simple per-address counters provide
on-chain rate limiting that complements off-chain
throttles. All state transitions emit typed events to
support downstream monitoring without expensive on-
chain queries [17-19].

We deploy a permissioned Ethereum network using
IBFT 2.0 proof-of-authority with immediate finality.
Validators (24) are operated by distinct institutions and
managed via  multisignature  governance for
add/remove actions. Nodes run with network-level
allowlists (P2P and RPC), mTLS for operator access,
log shipping to a WORM archive, and continuous
health/attestation checks. Finality at the consensus
layer ensures that once an Approval event is observed,
inclusion cannot be reverted under honest-majority
assumptions, which is critical for safe key release.
Rate-limiting at the gateway and contract-level
pausability provide defense-in-depth against abuse and
incident response.

2.3. Off-Chain Storage, Encryption, and Integrity
Commitments

Raw omics files never appear on chain. Providers
encrypt each object at rest using AES-GCM with a
unique symmetric key [20]. The storage pointer
recorded on chain references a durable location such
as object storage or an IPFS content identifier [21]. The
approval event includes a compact reference to a key
escrow service that releases the symmetric key only to
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the authorized requester after validating the event
signature and performing multifactor checks, using
typed structured-data signatures for robustness [23].
The client decrypts the ciphertext, hashes the plaintext,
and compares the result with the on-chain commitment
committed during registration; any discrepancy signals
modification, corruption, or substitution. For collections,
providers may group files into Merkle trees and commit
a root on chain, enabling efficient verification of
individual chunks and periodic attestation of entire
datasets without rehashing every object [22].

Each object is encrypted with a random 256-bit
data-encryption key (DEK) generated by the site’s
KMS/HSM. The DEK is used once per object with AES-
GCM, a unique 96-bit nonce, and authenticated
additional data (AAD) binding {dataset id, version,
MIME, length}. The DEK is never stored in plaintext; it
is wrapped by a long-lived key-encryption key (KEK)
that resides and operates inside the KMS/HSM
(envelope encryption). Stored artifacts include the
ciphertext, GCM tag, nonce, AAD, and the KEK-
wrapped DEK.

When the smart contract emits an Approval event
for {caller, dataset id, block_number}, the off-chain
gateway verifies event inclusion and finality on the
permissioned chain, checks caller identity/MFA, and
issues a single-use, time-boxed token to unwrap the
DEK inside the KMS/HSM. Tokens are origin-bound
(mTLS) and logged. Denials are logged symmetrically.

KEKs have a short cryptoperiod; rotation is
orchestrated by the KMS/HSM. On rotation, wrapped
DEKs are re-wrapped under the new KEK; high-value
objects may be re-encrypted under fresh DEKs
opportunistically  (background rekeyer) with old
wrapped DEKs securely destroyed. This limits blast
radius if a KEK is later compromised.

Transport uses TLS 1.3 with ephemeral ECDHE,
providing forward secrecy in transit. At rest, per-object
DEKSs ensure that compromise of any single DEK does
not expose other objects. Compromise of a KEK does
not reveal past plaintexts if (i) the KEK is rotated and
old wraps are destroyed, or (ii) objects are re-encrypted
under new DEKs during rotation. Operationally, we
combine periodic KEK rotation, background rekeying,
and strict audit to approximate forward secrecy over
time for stored content.

Nonces and integrity. GCM nonces are never
reused; nonces are generated randomly and stored
next to the ciphertext. GCM authenticates AAD; the on-

chain SHA-256 commitment is a provenance anchor
that complements (not replaces) AEAD integrity.

We commit the SHA-256 of the plaintext to support
reproducible  verification across re-encryptions;
implementations may optionally include a public salt in
the commitment record to harden against dictionary
lookups on small, known files.

2.4. Identity, Consent, and Access Workflow

Real-world identities are mapped to blockchain
addresses in a lightweight registry governed by the
consortium. During onboarding, institutions attest to a
user’s role and data-use agreements, binding those
attributes to the user’'s wallet address. Consent and
policy are encoded as per-item allow-lists in the
registry, which can be updated to grant, revoke, or
time-box access. The typical flow begins when a
consumer queries the ledger to discover a dataset and
then submits a request. The contract verifies the
caller's address and the item’s policy. On approval, the
event stream signals the off-chain gateway to release
an object-specific decryption key; on denial, the
contract logs the decision, which the detector later
interprets in context [19]. On approval, the off-chain key
gateway (not the smart contract) verifies
inclusion/finality of the Approval event, authenticates
the requester (MFA), and releases an origin-bound,
single-use token that permits the client to unwrap the
DEK inside the KMS/HSM. Key rotation and address
recovery are supported by linking new addresses to
existing identities under multisignature approval so that
security hygiene does not break provenance [34].

2.5. Event Collection and Feature Construction

Two log sources drive the anomaly detector:
blockchain events and storage access logs. The first
captures all consequential control-plane activity,
including registrations, grants, denials, approvals, and
administrative actions; the second records data-plane
behavior such as successful fetches, bytes served,
latency, throttling, and failed retrievals. To preserve
privacy, user and dataset identifiers are
pseudonymized with keyed hashing before feature
construction [24,25]. Each raw event is standardized,
timestamped, and enriched with rolling aggregates
such as requests per unit time and denial ratios. Time-
of-day is encoded with circular features to capture
diurnal rhythms. For sequence modeling, events are
grouped into fixed-length windows in temporal order,
both per user. Windows are built with stride one to
enable early detection while keeping adjacent samples
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highly overlapping; data leakage is prevented by
constructing train, validation, and test sets on disjoint
time intervals and disjoint user cohorts.

The IDS runs as a log-consumer service (one per
consortium or per site) that subscribes to contract
events and storage logs. It emits alerts to an operator
console and an orchestration hook that can trigger
throttling or contract pausability. The IDS does not gate
key release directly; instead, alerts inform operators
and automated guards that act via well-defined
controls.

2.6. LSTM Intrusion Detection Model

The detector uses a compact two-layer Long Short-
Term Memory (LSTM) followed by a sigmoid classifier
[36]. Categorical tokens such as event type,
pseudonymous user, and dataset identifier are
embedded into dense vectors and concatenated with
numerical features comprising rate, volume, inter-
arrival, denial fraction, latency, and time encodings.
The first LSTM layer captures short-range
dependencies within an access burst; the second
abstracts higher-level patterns across mixed event
types. Layer normalization and dropout reduce
covariate shift and overfitting, and focal modulation can
emphasize hard positives in rare-event settings [26—
28]. The model outputs an anomaly probability for each
window. Because anomalies are rare, the training
objective uses class weighting or focal modulation to
emphasize hard positives without inflating false
positives. Inference runs continuously on streaming
windows; when the output crosses a calibrated
threshold, the system emits an alert with the
responsible address, the implicated datasets, and the
causal sequence fragment to support triage.

2.7. Training Procedure and Thresholding

To learn realistic boundaries, the detector is trained
on a mixture of benign sequences and synthetically
injected attacks that mirror adversary goals observed in
data-sharing systems. Benign sequences arise from
replayed traces of human-scale analytics with small
batches and idle periods. Attack sequences comprise
rapid-fire retrievals from a compromised account,
repeated requests for unauthorized items designed to
elicit denials, and low-and-slow patterns that mimic
normal cadence while gradually increasing volume.
The dataset is partitioned chronologically into train,
validation, and test splits, with users held out to assess
generalization across principals. Optimization uses
Adam with early stopping on average precision to avoid

overfitting to a specific operating point; operating
characteristics are reported with precision, recall, F1,
and area under the precision—recall curve, which is
preferred for imbalanced data [29,30]. The alert
threshold is set on a purely benign validation set to
bound false alarms per day to an operationally
acceptable rate; operating characteristics such as
precision, recall, and mean time to first alert are then
evaluated across the full test set, independent of
threshold tuning.

2.8. Workload Generation and Attack Scenarios

We emulate a consortium in which a provider
registers approximately one hundred gene-expression
files as representative omics payloads and grants
access to a dozen analyst accounts. Normal activity
balances exploratory browsing and targeted retrieval,
modeled with inhomogeneous Poisson arrivals to
capture business-hour concentration and occasional
evening work. The integrity threat model modifies a
small fraction of stored objects after registration
through byte-level edits and label swaps. The
behavioral threat model includes three scenarios. In the
burst exfiltration case, a compromised credential drives
dozens of accesses within a few minutes, often still
within nominal rate caps but outside human cadence.
In the probing case, an actor repeatedly requests
datasets they are not authorized to see, generating
sequences of denials interleaved with legitimate
activity. In the low-and-slow case, an attacker paces
requests just under typical rates over extended periods,
attempting to evade both rules and naive anomaly
detectors.

2.9. Evaluation Protocol and Metrics

Evaluation focuses on both security efficacy and
operational cost. Integrity efficacy is measured as the
fraction of modified objects rejected by client-side
verification on first access and during periodic
attestation runs; because verification is cryptographic,
the expected ideal is complete detection. Behavioral
efficacy is measured with precision, recall, F1 score,
and area under the precision—recall curve computed
over attack windows, alongside mean time to first alert
from the start of an attack sequence. Operational cost
is measured as false alarms per day on purely benign
sessions, smart-contract latency and throughput under
realistic gas limits, and detector inference time on
commodity CPUs. To contextualize gains, a rules-only
baseline that enforces fixed per-user caps and simple
counters is evaluated under identical workloads.
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Uncertainty in summary metrics is reported using
bootstrap resampling over independent sessions, and
all model selection decisions are confined to the
training and validation partitions [31].

2.10. Implementation and Reproducibility

Smart contracts are implemented in modern Solidity
and statically analyzed with off-the-shelf tools to reduce
common pitfalls [32,33]. The off-chain gateway
validates contract events with typed signatures and
enforces multifactor authentication before releasing
keys [23]. The streaming pipeline subscribes to
validator nodes via websockets, ingests storage logs,
and materializes feature windows using a stateful
stream processor [19]. The LSTM is implemented in a
mainstream deep learning framework with reproducible
seeds and versioned artifacts; trained weights,
embeddings, and preprocessing code are archived
alongside a workload generator that can recreate all
figures and tables from a clean deployment. A one-click
script provisions a fresh permissioned chain, deploys
contracts, seeds accounts, replays workloads, and
exports evaluation reports so that results can be
independently verified without access to sensitive data.

2.11. Governance, Safety, and Privacy Controls

The system integrates governance patterns aligned
with institutional risk. Administrative operations such as
contract upgrades, emergency pauses, and role
assignments require multisignature approval [34]. Key
rotation and account recovery are auditable and bound
to real-world identities in the registry, ensuring
continuity without weakening provenance guarantees.
Logs, models, and features are retained under least-
privilege policies with scheduled deletion; identifiers
used for modeling are pseudonymized with rotating
secrets to reduce linkability [24,25]. Because integrity
checks trigger at access time, a background attestor
periodically recomputes Merkle proofs to surface
dormant tampering [22]. Together, these controls help
ensure that cryptographic guarantees and behavioral
monitoring are complemented by operational
safeguards that keep the platform usable and
trustworthy at consortium scale.

3. RESULTS

3.1. Experimental Context

We evaluated the proposed framework in a
consortium-style setting that mirrors a realistic omics-
sharing workflow. A data provider registered

approximately one hundred gene-expression files as
stand-ins for protected omics artifacts. Each file was
stored off-chain as an encrypted object, while its SHA-
256 digest, provenance metadata, and access policy
were committed to a permissioned Ethereum ledger. A
cohort of twelve analyst accounts, mapped to wallet
addresses via the identity registry, performed routine
discovery and retrieval tasks over several days of
simulated activity with diurnal rhythm and small
analyst-sized batches. Throughout, the Long Short-
Term Memory (LSTM) detector consumed a unified
stream of blockchain events and storage access logs,
scoring sliding windows for anomalies without
interfering with normal operations. Two families of
adversarial behavior were injected: integrity tampering
and behavioral misuse.

3.2. Integrity Verification

The integrity mechanism yielded a binary, self-
verifiable signal at the point of use. Whenever a
consumer retrieved a tampered object, client-side
recomputation of the SHA-256 digest failed to match
the on-chain commitment, and the object was rejected.
Across byte-level edits, header manipulations, and
label swaps deliberately crafted to be subtle, detection
was perfect: all altered artifacts were identified as
inconsistent on first access, corresponding to 100%
tamper detection. This behavior is consistent with the
avalanche property of cryptographic hashing and is
valuable in practice because it removes reliance on a
trusted log server or centralized auditor; any participant
can independently verify that the file being analyzed is
exactly the one originally registered. Integrity checking
also surfaced provenance value beyond simple
pass/fail: the immutable registration record tied each
dataset to a specific uploader, time, and policy state,
making any subsequent investigation of suspicious
changes straightforward and auditable.

3.3. Intrusion Detection Performance

The LSTM-based intrusion detector substantially
improved the visibility of misuse patterns over a rules-
only baseline. Trained on benign sequences
augmented with synthetic attack windows, the model
achieved high precision while retaining sensitivity to
diverse behaviors. Across the full test period, attack
windows were flagged with 95% precision and 90%
recall, producing an F1 score near 0.92 under the
natural class imbalance of the workload. False alarms
were rare; using a threshold calibrated on a purely
benign validation split, the detector held the false-alarm
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Table 2: Detection and Integrity Performance

Metric Proposed (Blockchain+LSTM) Baseline (rules-only)
Precision (attack detection) 95% ~80%
Recall (attack detection) 90% ~75%
F1 score ~0.92 ~0.77

False-alarm rate (FAR)

~1% of windows

~5% of windows

Data tampering detection

100% (all changes detected)

0% (undetected)

Integrity preservation

Immutable on-chain record

Vulnerable (mutable DB)
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Figure 2: Access-rate time series and detected attack window. The blue curve shows requests per minute over one hour.

rate to approximately 1% of scored windows. In
practical terms, analysts and operators encountered
few spurious notifications during normal peaks, yet the
system reacted rapidly when behavior departed from
learned norms. In the burst-exfiltration scenario—about
fifty rapid retrieval attempts by a compromised account
within several minutes—the anomaly score rose within
the first dozen events, and the alert preceded most of
the attempted downloads, enabling policy actions such
as throttling or temporary suspension before large-
scale exfiltration.

3.4. Comparative Baseline

To contextualize these results, we implemented a
baseline detector that mirrors what many research
groups deploy today: static per-user rate caps and
simple counters without sequence modeling or
cryptographic integrity. Under identical workloads, the
baseline exhibited two operational pathologies. First,
precision degraded during legitimate busy hours
because normal micro-bursts frequently crossed static
thresholds; this manifested as ~80% precision and a
visibly higher alert volume during benign peaks.

Second, recall suffered for stealthier attacks that
stayed just under caps or distributed activity over time,
yielding roughly ~75% recall overall. Most critically, in
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Figure 3: Detection performance comparison between the
proposed Blockchain+LSTM framework and the rules-only
baseline, reporting Precision, Recall, F1, and False-Alarm
Rate.
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the absence of cryptographic commitments, the
baseline had no mechanism to detect silent storage-
layer modification; tampered files appeared clean until
downstream  scientific  inconsistencies  prompted
manual investigation. The side-by-side comparison
illustrates these differences succinctly: the proposed
framework operates at a more favorable point on the
precision—recall trade-off and adds a hard integrity
guarantee that the baseline cannot emulate.

3.5. Alert Latency and Operator Impact

Because the detector scores rolling windows in
event time rather than waiting for fixed counters to trip,
mean time to first alert was short relative to the pace of
data transfer. In the exfiltration case, the first alert
typically fired after the 10th—12th request, leaving a
meaningful runway to intervene before the majority of
objects were fetched. In routine use, the system was
quiet; the combination of calibrated thresholding and
sequence context suppressed alerts for benign outliers
such as small batch scripts or occasional after-hours
work. Every alert arrived with immutable context from
the chain—who requested what, which policy path
authorized or denied the request, and which sequence
of approvals and denials preceded the anomaly—
reducing the cognitive load during triage and
accelerating root-cause analysis.

3.6. System Overhead, Latency, and Throughput

We quantified the operational cost of the security
controls to ensure the approach is compatible with day-
to-day research. On the ledger, registering a dataset
consumed on the order of 1.2 million gas and an
access check around 200 thousand gas. In the
permissioned network, this translated to a few seconds
of control-plane latency per transaction, negligible
relative to the time to transfer MB-scale files.
Throughput in the 10-20 transactions/second range
was comfortably sufficient for the observed access
cadence because omics workloads are human-driven
rather than machine-generated. On the analytics side,
the detector's inference path—feature assembly,
embedding lookups, and two LSTM layers—ran in well
under a second on commodity CPUs, and the
streaming pipeline did not become a bottleneck under
peak logging rates. From the analyst's perspective,
perceived latency remained dominated by storage 1/O,
not by the integrity or monitoring layers. All gas and
latency measurements were obtained on Hyperledger
Besu (vX.Y), IBFT 2.0, block time 2 s, 4 validators,

Solidity v0.8.Z with optimizer (200 runs); registration
consumed =1.2 M gas; access checks =200 k gas.

3.7. Ablations and Sensitivity

We conducted lightweight ablations to understand
which elements contributed most to performance.
Removing denial-ratio and inter-arrival features
reduced recall against probing attacks, underscoring
the value of explicit temporal context. Shortening the
window length below ten events increased false alarms
because the model lost enough temporal signal to
separate benign micro-bursts from malicious bursts.
Conversely, extending the window beyond twenty
events produced marginal gains at the cost of slightly
longer detection delay. Replacing the LSTM with a
feed-forwmard  network over  window-aggregated
statistics degraded recall across all attack types,
suggesting that the sequential inductive bias is
important even for relatively short horizons. Finally,
switching off the on-chain rate-limit guardrails had little
effect on detection metrics but increased the number of
requests that could be attempted before an alert fired;
this reinforces the defense-in-depth posture in which
simple contract-level limits constrain the search space
while the sequence model distinguishes misuse from
legitimate spikes.

3.8. Error Analysis and Residual Risks

Despite strong overall performance, one class of
adversarial behavior proved more challenging: carefully
staged low-and-slow exfiltration that hews closely to a
user's historic rhythm while incrementally ratcheting
volume over extended intervals. In these cases,
detection often required longer context than a single
short window could provide, and a small fraction of
attack windows were missed. Increasing the window
length or aggregating evidence across overlapping
windows improved sensitivity but slightly raised false
alarms. This trade-off suggests two practical
mitigations for deployments at scale: scheduled
retraining to capture evolving benign rhythms as teams
change their workflows, and a secondary detector that
aggregates per-user anomaly scores over longer
periods to surface small but persistent deviations. We
also note residual non-algorithmic risks inherent to any
blockchain-based system, such as key theft or
misconfigured policies. The governance controls—
multisignature administration, pausability, and auditable
key rotation—proved useful during simulated incident
drills, but formal audits and hardware-backed key
custody remain advisable for production rollouts.
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4. DISCUSSION

4.1. Principal Findings

This study demonstrates that a defense-in-depth
design uniting an immutable ledger with sequence-
aware monitoring can materially raise the security
baseline for omics data sharing without disrupting
analyst workflows. The blockchain layer delivered a
categorical guarantee at the object boundary: every
post-registration  modification was revealed at
verification time, yielding perfect tamper detection in
our evaluation [6,22]. The Long Short-Term Memory
(LSTM) detector complemented this with high-fidelity
behavioral oversight, achieving strong precision and
recall under realistic, human-paced access patterns
[12]. Together, these layers addressed distinct but
interlocking risks—cryptographic integrity for data-
centric attacks and temporal anomaly detection for
misuse that would otherwise pass formal access
checks—while keeping latency and cost within practical
limits for research operations [11].

4.2. Interpretation of Security Efficacy

The integrity result is unsurprising in theory but
powerful in practice: anchoring content digests on a
consortium ledger transforms integrity checks from a
best-effort log comparison into a cryptographic proof
verifiable by any participant [6,22]. This reframes
reproducibility: analysts can attest that inputs match the
committed artifacts, and any deviation becomes an
auditable event rather than a disputable claim. The
behavioral detector's gains stem from modeling how
legitimate work unfolds over time. A windowed LSTM
captures cadence, burstiness, and alternation of
approvals/denials better than static counters. That is
why the system alerted early during rapid exfiltration
and remained quiet during benign micro-bursts [12].
The two layers are not redundant: the ledger cannot
judge intent, and the IDS cannot certify content;
security emerges from their composition.

4.3. Operational Implications

From an operator's standpoint, the most
consequential property is not a single metric but the
shape of the detector's errors. High precision at a
conservative threshold translates into few spurious
alerts during busy hours, preserving trust in
notifications and avoiding fatigue. Early alerts—emitted
after a handful of suspicious actions—create a window
for throttling or quarantine before damage accrues.

Meanwhile, the ledger’s immutable trail supplies instant
context for triage: which address, which dataset, which
policy path, and which sequence of events led to the
alert. In aggregate, incident response shifts from
inference over mutable logs to verification against a
shared, append-only record, shortening time-to-contain
and simplifying post-mortems [7,30].

4.4. Comparison with Conventional Controls

Rules-only deployments—fixed per-user caps and
counters—are attractive for their simplicity but struggle
at both ends of the spectrum. They over-alert during
legitimate peaks because they lack sequence context,
and they under-alert during low-and-slow misuse that
sits below thresholds. They also lack a first-class
integrity primitive: silent storage-layer modification
looks benign until downstream analyses fail. Our
results show that adding cryptographic commitments
eliminates that class of risk and that even a compact
sequence model outperforms static rules on the
precision—recall frontier [12,22,30]. Importantly, we do
not advocate replacing simple rules; lightweight
contract-level rate limits remain valuable guardrails that
constrain attacker search space and complement the
IDS [18].

4.5. Governance, ldentity, and Consent

Security properties in a multi-institution setting
ultimately rest on governance. Mapping real- world
identities to wallet addresses, supporting key rotation
and account recovery, and requiring multisignature
authorization for sensitive administrative actions are as
important as model hyperparameters [34]. In our
prototype, plausibility enabled safe incident drills, and
typed event signatures simplified downstream
validation [18,23]. Consent and data-use restrictions
can be encoded as per-item policies, changed
transparently over time, and audited in perpetuity. This
auditability is not merely bureaucratic: it makes it
harder for insiders to repudiate actions and easier for
external reviewers to verify that access conformed to
declared rules.

4.6. Limitations and Threat Surface

Three limitations merit emphasis. First, detection of
carefully staged low-and-slow exfiltration remains
challenging. If an attacker shadows a user’s historic
tempo, short windows carry little discriminative signal;
longer windows or score aggregation improve
sensitivity but can erode precision. Periodic retraining
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on evolving benign rhythms and a secondary, slower-
time- scale aggregator are practical mitigations.
Second, integrity verification triggers at access time;
absent background attestation, corruption can lie
dormant. A scheduled attestor that recomputes Merkle
proofs over collections reduces this dwell time [22].
Third, the blockchain layer introduces non-algorithmic
risks: key theft, policy misconfiguration, and contract
bugs. Role-based controls, hardware-backed keys,
formal audits, and conservative contract patterns are
necessary complements to the design [17,18]. We also
assumed honest-majority consensus in a permissioned
network; validator collusion, while unlikely in a
governed consortium, would weaken guarantees and
should be addressed with diverse operators and
external checkpoints [15,16].

4.7. External Validity and Generalizability

Our workload mirrored analyst-paced research
access over MB-scale files; clinical pipelines or near-
real-time decision support may impose tighter latency
budgets and different rhythms. Nonetheless, the
architectural split—hashes and policies on chain, bulk
data off chain, and sequence monitoring over unified
logs—generalizes. The content type is largely
orthogonal: proteomics tables, imaging derivatives, or
multi-omics bundles can be hashed and verified in the
same way; the detector consumes usage, not payload.
For larger consortia, the throughput of a permissioned
Ethereum network is ample for control-plane
transactions, but higher-frequency environments may
benefit from layer-2 batching or a dual-chain
architecture partitioning identity/consent from access
logging. Cross-site deployment also invites federated
variants of the IDS to learn from diverse rhythms
without centralizing raw logs.

4.8. Relation to Prior Work

Prior blockchain-for-genomics systems emphasize
immutability, consent, and provenance but rarely
integrate live misuse detection; conversely, intrusion
detection for healthcare networks often focuses on
packet-level traffic rather than application-level data
sharing. Our contribution is to show that these strands
are synergistic in the omics setting: a ledger supplies
ground truth for objects and policies, while a sequence
model distinguishes misuse from legitimate flows atop
that ground truth [8,9,13]. The result is a platform that
can both prove what data are and judge how they are
used, moving beyond perimeter defenses and mutable
audit logs [43].

4.9. Toward Production and Future Enhancements

Several engineering extensions follow naturally.
Merkle-root commitments for collections reduce gas by
enabling batched verification and efficient attestation
[22]. Zero-knowledge proofs could let clients
demonstrate integrity or authorization predicates
without revealing identifiers, further tightening privacy
[39]. On the behavioral side, transformer-based
sequence models may capture longer-range
dependencies at similar inference cost [40], while
graph neural networks over the user—dataset bipartite
graph could surface structural anomalies (e.g., sudden
expansion of a user’'s neighborhood). Federated or
split-learning variants would allow sites to collaborate
on IDS improvements without exchanging raw logs,
potentially coordinated via the ledger itself. Finally,
upgrading lifecycle cryptography to post-quantum
schemes for key exchange and signing aligns the
platform  with  long-horizon = genomic  privacy
requirements [41,42]. Beyond omics, adjacent threads
in our program suggest practical extensions that plug
directly into this framework: model-layer tamper signals
from quantum-gradient-descent defenses could stream
into our IDS to catch adversarial fine-tuning in real
time, hardening downstream analytics that consume
LLM outputs [36]. On the cryptography side, an Al-
sensing, post-quantum key management plane can
drive threat-adaptive rotation and algorithm agility at
the contract gateway, aligning our ledger with PQC
readiness. Quantum-enhanced learners that already
outperform classical baselines in cancer typing and
molecular property prediction motivate secure,
auditable model serving over our notarized data
channels [37,38]. At the clinical edge, an agentic,
voice-driven EHR interface can front our access layer
so clinicians query consent-governed datasets with
provenance-backed responses. Finally, multi-institution
resources such as a centralized nutrigenomics
database illustrate why fine-grained consent,
immutable integrity, and behavioral monitoring must
travel together as these platforms scale [44].

4.10. Ethical and Privacy Considerations

A persistent concern is secondary leakage through
monitoring features. Our pipeline pseudonymizes
principals, coarsens time, and restricts exported
metrics to aggregates. Because the IDS reasons about
patterns of access rather than content, it can operate
under strict data-handling regimes. Still, transparency
with participants matters: documenting what is logged,
how anomaly scores are used, and how long records
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are retained builds trust and facilitates compliance with
data-protection law. Right-to-erasure remains
compatible with the design: deleting off-chain objects
and expiring permissions satisfies data removal
requirements, while residual on-chain digests—
essentially random commitments—retain audit utility
without exposing content [24,25].

4.11. Synthesis and Implications

The key lesson is that security for scientific data is
not a single mechanism but a composition of
cryptographic guarantees, behavioral modeling, and
governance. Hash-anchoring raises the bar for
integrity, converting silent corruption into detectable
events; sequence modeling elevates detection beyond
brittle rules, offering timely, high-confidence alerts; and
transparent governance ensures that controls survive
turnover, incidents, and adversarial pressure. For
omics consortia, this composition translates into
reproducible pipelines with audit-ready provenance and
a monitoring layer tuned to human workflows. For
institutions, it offers a tractable path to measurable risk
reduction without a wholesale re-architecture of storage
or analysis stacks. By aligning security primitives with
the realities of research operations, the framework
demonstrates that stronger guarantees need not come
at the expense of usability—and that, in the high-stakes
context of biomedical data, such guarantees are both
feasible and necessary.

5. CONCLUSIONS

We show that pairing an immutable, consent-aware
ledger with sequence-aware monitoring provides
practical, defense-in-depth security for omics sharing:
Ethereum smart contracts guarantee provenance and
tamper evidence at the object boundary, while an
LSTM IDS detects misuse with high fidelity and low
operational noise. The approach adds minutes-scale
overhead at most, aligns with consortium governance,
and improves auditability and  reproducibility.
Remaining risks—low-and-slow  exfiltration, key
custody, and contract hygiene—are tractable with
periodic attestation, federated/long-horizon detectors,
and hardened operational controls. This work offers a
deployable path to trustworthy, privacy-preserving
bioinformatics at scale.
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