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Abstract: Securing omics datasets against tampering and misuse is essential for reproducible research and privacy. We 
present a defense-in-depth framework that combines Ethereum smart contracts for tamper evidence, provenance, and 
fine-grained access with a Long Short-Term Memory (LSTM) intrusion detection system that models event sequences to 
flag abnormal behavior. Raw omics files remain off-chain; their SHA-256 digests and permissions are recorded on-chain. 
Authorized consumers obtain contract-mediated tokens to fetch encrypted data, recompute hashes, and verify integrity. 
The intrusion detection system (IDS) ingests blockchain transactions and storage access logs in sliding windows to 
detect bursts, probing, and insider over-access. We implement the system on a permissioned Ethereum network and 
evaluate it with a simulated case study using public gene-expression files and scripted attacks. All post-registration data 
modifications were detected at verification time (100% integrity detection). Behavioral attacks were identified with 95% 
precision and 90% recall, reducing false alarms to 1% of windows and outperforming a rules-only baseline (80% 
precision, 75% recall). Transaction latency and resource costs remained modest. These results demonstrate a practical 
path to trustworthy omics sharing that unites cryptographic immutability with monitoring. Our design supports consent 
enforcement and lays groundwork for extensions such as Merkle-root batching, key rotation, and federated or 
transformer-based detectors. 
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1. INTRODUCTION 

Omics datasets—spanning genomics, 
transcriptomics, proteomics, and related modalities—
have become indispensable to modern biomedicine. 
Population-scale sequencing and high-throughput 
profiling feed discovery pipelines for disease risk 
prediction, target identification, and precision 
therapeutics [1]. These data are inherently sensitive: a 
genome encodes immutable personal attributes and 
familial relationships, and derived expression profiles 
may reveal disease states or treatment histories [2]. As 
repositories grow in size and value, so does the 
incentive for adversaries to exfiltrate, corrupt, or subtly 
manipulate records [3]. Beyond privacy harms, integrity 
failures have scientific consequences: if files are 
altered or mislabeled without detection, downstream 
analyses can become irreproducible or misleading, 
eroding trust in published findings and clinical 
translation [4]. 

Securing omics data is uniquely difficult because it 
is rarely confined to a single institution. Multi-site 
consortia, biobanks, and research networks routinely  
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share subsets of samples under complex consent 
terms [5]. Traditional security architectures center on a 
single administrative domain: a database guarded by 
perimeter defenses, access-control lists, and 
application logs. While familiar and operationally 
convenient, this model exhibits well-known 
weaknesses. Centralized administrators can be 
coerced or compromised; logs can be altered or 
selectively deleted; and “authorized” users can still 
behave maliciously by over-accessing or siphoning 
data [3]. Furthermore, classic systems often lack 
strong, cryptographic guarantees that a file retrieved 
today is exactly the one that was originally registered. 
In a domain where single-nucleotide changes matter, 
probabilistic or best-effort checks are insufficient [6]. 

Blockchain technology offers a compelling 
complement. A blockchain provides an appendonly, 
tamper-evident ledger replicated across independent 
nodes. On Ethereum, smart contracts encode access 
policies and emit immutable event trails; cryptographic 
hashes recorded on-chain act as durable fingerprints of 
off-chain artifacts [7–9]. If a retrieved file’s hash 
diverges from the committed digest, even by a single 
bit, verification fails and the discrepancy is auditable by 
all participants [6,7]. For healthcare contexts, a 
permissioned or consortium Ethereum network can 
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preserve these guarantees while offering operational 
control and predictable costs [10,11]. Crucially, large 
omics files remain off-chain in secure storage; only 
compact metadata, hashes, and permissions are 
anchored on the ledger to preserve privacy and 
scalability [8,9]. 

Yet blockchains alone do not solve behavioral 
security. A smart contract will faithfully grant access to 
a caller with valid credentials; it does not judge whether 
that caller’s pattern of activity is suspicious. Many real 
incidents exploit exactly this gap: credential theft, 
insider abuse, or automated scraping that stays within 
nominal rate limits [3]. Detecting such misuse requires 
modeling sequences over time—who accessed what, 
how often, and in which order—and distinguishing 
legitimate research workflows from anomalous bursts, 
probing, and lateral movement. Signature-based 
intrusion detection struggles with novel attacks and 
evasion. In contrast, sequence models from deep 
learning—particularly Long Short-Term Memory 
(LSTM) networks—are effective at learning temporal 
dependencies and flagging deviations without hard-
coded rules [12,13]. 

This work unifies these two paradigms into a 
defense-in-depth framework for secure omics sharing. 
We propose an architecture in which data providers 
store encrypted files in off-chain storage and commit 
their SHA-256 digests, provenance metadata, and fine-
grained permissions to an Ethereum smart contract 
[6,7]. Data consumers query the contract to discover 
datasets, obtain contract-mediated authorization 
tokens, retrieve the corresponding objects from 
storage, and verify integrity by recomputing hashes. In 
parallel, an LSTM-based intrusion detection system 
(IDS) ingests a consolidated stream of blockchain 
transactions and storage access logs (e.g., fetch 
events, volumes, timings). Using sliding windows over 
these event sequences, the IDS outputs anomaly 
scores that drive alerts and automated mitigations such 
as throttling or temporary quarantine [12,13]. The 
ledger enforces what is allowed and preserves an 
incorruptible audit trail; the LSTM learns how normal 
looks and spots misuse that otherwise slips through. 

Our design goals reflect practical constraints faced 
by research consortia. First, strong integrity and 
provenance: every file must be verifiable against a 
public, immutable commitment, enabling reproducible 
analyses and auditability [6–9]. Second, fine-grained, 
consent-aware access control: smart contracts should 
express per-dataset or per-cohort permissions and 

support revocation and expiry, aligning with evolving 
consent or data-use agreements [5,10]. Third, early 
anomaly detection with low false-alarm rates: 
operational teams cannot respond to constant noise; 
the IDS must prioritize precision while retaining 
sensitivity to diverse attack modes [12,13]. Fourth, 
operability and cost proportionality: transactions must 
complete in seconds, not minutes, with gas costs 
compatible with research workloads; performance on 
permissioned Ethereum is compatible with typical 
research cadence [11]. Fifth, privacy preservation: raw 
omics never appear on-chain; identities and logs are 
pseudonymized where feasible; encryption at rest and 
in transit is assumed, with keys released only to 
authorized principals [5,8,9]. Finally, governance and 
recoverability: administrators should be able to pause 
contracts during incidents, rotate keys, and map 
institutional identities to wallet addresses without 
centralizing all power [10]. 

We target a permissioned Ethereum network, i.e., a 
consortium blockchain where participating institutions 
operate validator nodes and membership is governed 
by policy. Compared to public chains, permissioned 
networks provide predictable latency, private 
membership, and operational control while retaining 
append-only, tamper-evident logs and smart-contract 
programmability. This setting aligns with multi-
institution omics workflows that require governed 
participation and auditability without public write 
access. We present a concrete instantiation of this 
framework. On the blockchain side, a DataRegistry 
contract records dataset digests and URIs, manages 
an access-control list per item, and emits events on 
registration and access decisions [7–9]. We employ 
role-based controls and pausability to reduce 
administrative risk, and we discuss rate-limiting 
patterns and event-driven gateways that deliver 
decryption keys to authorized users [10]. On the 
analytics side, the IDS represents each event as a 
compact feature vector—event type, pseudonymous 
user identifier, time bin, dataset reference, and simple 
counts—then passes a rolling window to a two-layer 
LSTM followed by a dense classifier; thresholds are 
tuned on benign validation logs to bound false positives 
[12,13]. 

To evaluate the approach, we emulate a realistic 
consortium workflow using publicly available gene-
expression files as stand-ins for protected content. 
Providers register datasets and assign permissions to a 
small group of consumers who perform routine 
analyses at human-scale cadence. We inject two 
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classes of adversarial behavior. Integrity attacks 
arbitrarily alter a subset of stored files after registration 
to test whether verification at access catches every 
modification. Behavioral attacks simulate a 
compromised account that attempts rapid, broad 
retrievals beyond typical usage, and repeated requests 
for unauthorized datasets to elicit denials. We contrast 
our system’s detection capability with a baseline rule 
set—fixed rate limits and simple counters—chosen to 
reflect what many institutions can deploy with minimal 
tooling. 

The results, detailed later, show that the 
cryptographic layer guarantees tamper evidence at the 
point of use, while the LSTM discriminator substantially 
improves detection quality over rules alone, producing 
fewer spurious alerts without sacrificing sensitivity [11–
13]. Equally important, transaction latency and 
throughput on a permissioned Ethereum network 
remain compatible with research workflows, and the 
IDS computes in sub-second time on commodity CPUs 
[11,12]. While no single mechanism is sufficient against 
all threats, the combination of immutable provenance 
and learned behavior modeling markedly raises the bar 
for attackers and increases operator confidence that 
misuse will be visible and actionable. 

This paper advances the discourse in two ways. 
Conceptually, it frames omics security as the union of 
data-centric guarantees and behavior-centric 
monitoring and demonstrates that the two reinforce 
each other when co-designed. Practically, it provides 
an implementation blueprint—covering contract 
interfaces, event schemas, and an IDS feature 
pipeline—that others can reproduce and adapt. Our 
aim is not to replace institutional controls or legal 
agreements, but to supply cryptographic and 
algorithmic scaffolding that makes those controls 
verifiable and violations observable across 
organizational boundaries. 

2. METHODS 

2.1. System Architecture 

We designed a defense-in-depth system that 
couples a permissioned Ethereum ledger for integrity, 
provenance, and fine-grained access with a sequence-
aware intrusion detector that models how the platform 
is used over time [15,16,35]. Data providers deposit 
raw omics files into secure off-chain storage and 
immediately commit a cryptographic digest plus 
metadata and permissions to the chain. Data 
consumers discover datasets and request access via 

 
Figure 1: System architecture. (1) Provider encrypts an omics object with AES-GCM and registers its SHA-256 commitment, 
metadata, and permissions on the Blockchain (permissioned Ethereum). (2) Consumer requests an object from off-chain 
storage only after obtaining authorization, using the storage pointer recorded on chain. (3) The consumer proves authorization 
by presenting a smart-contract approval event to an off-chain key gateway, which verifies event inclusion/finality and then 
releases a time-boxed, single-use decryption token. (4) Client retrieves the ciphertext, decrypts, hashes the plaintext, and 
compares to the on-chain commitment (tamper evidence). (5) Blockchain events and storage access logs stream to the IDS, 
which scores sliding windows and emits anomaly alerts to operators and an orchestration service (e.g., to throttle or quarantine). 
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smart contracts; if authorized, they retrieve encrypted 
objects from storage and verify integrity by recomputing 
the digest and comparing it with the on-chain 
commitment. 

In parallel, an analytics pipeline ingests blockchain 
events and storage access logs, constructs feature 
sequences, and feeds them to an IDS that models how 
the platform is used over time to detect behavioral 
anomalies. The ledger enforces what is allowed and 
preserves an immutable audit trail; the LSTM judges 
whether observed behavior matches learned patterns 
of legitimate use [12,13,36]. 

2.2. Blockchain Component and Smart Contract 
Design 

The blockchain layer runs on a consortium 
Ethereum network using proof-of-authority consensus 
to achieve predictable latency and governance [15,16]. 
Participants transact from externally owned accounts; 
validator nodes are operated by distinct organizations 
in the consortium. The principal contract, DataRegistry, 
exposes functions to register new objects, mutate per-
item permissions, check access, and verify digests. 
Registration writes a stable identifier, the SHA-256 
digest, a pointer to off-chain storage, and metadata 
required for provenance. Access checks are performed 
when a consumer calls the contract; successful 
evaluation emits an approval event carrying a 
reference to the object’s decryption key, while denials 
are logged to the same immutable trail. The contract is 
hardened with role-based access control for 

administrative operations, pausability for incident 
response, and conservative state-change patterns to 
avoid reentrancy. Simple per-address counters provide 
on-chain rate limiting that complements off-chain 
throttles. All state transitions emit typed events to 
support downstream monitoring without expensive on-
chain queries [17-19].  

We deploy a permissioned Ethereum network using 
IBFT 2.0 proof-of-authority with immediate finality. 
Validators (≥4) are operated by distinct institutions and 
managed via multisignature governance for 
add/remove actions. Nodes run with network-level 
allowlists (P2P and RPC), mTLS for operator access, 
log shipping to a WORM archive, and continuous 
health/attestation checks. Finality at the consensus 
layer ensures that once an Approval event is observed, 
inclusion cannot be reverted under honest-majority 
assumptions, which is critical for safe key release. 
Rate-limiting at the gateway and contract-level 
pausability provide defense-in-depth against abuse and 
incident response. 

2.3. Off-Chain Storage, Encryption, and Integrity 
Commitments 

Raw omics files never appear on chain. Providers 
encrypt each object at rest using AES-GCM with a 
unique symmetric key [20]. The storage pointer 
recorded on chain references a durable location such 
as object storage or an IPFS content identifier [21]. The 
approval event includes a compact reference to a key 
escrow service that releases the symmetric key only to 

Table 1: Security Threats to Omics Data and Mitigations 

Threat scenario Risks in traditional systems Mitigation in proposed framework 

Data tampering (integrity attack) Silent modification/corruption invalidates 
analyses; no immutable reference to detect 

changes. 

On-chain SHA-256 commitments; client 
verification rejects mis-matches; full audit trail 

of revisions. 

Unauthorized data access Credential reuse or server compromise leaks 
sensitive genomic data. 

Smart-contract ACLs; wallet-based auth; event-
driven key release; non-permitted callers 

denied and logged. 

Insider misuse / excessive access Authorized users over-download or share 
improperly, coarse monitoring misses 

atypical cadence. 

LSTM IDS models normal per-user sequences; 
flags bursts/atypical timing for early 

intervention. 

Brute-force / DDoS probing Floods overwhelm endpoints; threshold-only 
rules noisy. 

On-chain rate limits + pausability; IDS detects 
surges and triggers throttling/quarantine. 

Database exploit  Direct dumps bypass application logs; 
tampering/exfiltration remains covert. 

Ledger-mediated, auditable retrievals; off- 
ledger dumps fail hash checks; IDS observes 

anomalous storage-access patterns. 

Privacy and re- identification Over-exposure of identifiers; weak consent 
enforcement. 

Fine-grained on-chain consent/ACLs; only 
hashes/URIs on chain; optional dual- 

chain/GDPR workflows; pseudonymized IDS 
features. 
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the authorized requester after validating the event 
signature and performing multifactor checks, using 
typed structured-data signatures for robustness [23]. 
The client decrypts the ciphertext, hashes the plaintext, 
and compares the result with the on-chain commitment 
committed during registration; any discrepancy signals 
modification, corruption, or substitution. For collections, 
providers may group files into Merkle trees and commit 
a root on chain, enabling efficient verification of 
individual chunks and periodic attestation of entire 
datasets without rehashing every object [22]. 

Each object is encrypted with a random 256-bit 
data-encryption key (DEK) generated by the site’s 
KMS/HSM. The DEK is used once per object with AES-
GCM, a unique 96-bit nonce, and authenticated 
additional data (AAD) binding {dataset_id, version, 
MIME, length}. The DEK is never stored in plaintext; it 
is wrapped by a long-lived key-encryption key (KEK) 
that resides and operates inside the KMS/HSM 
(envelope encryption). Stored artifacts include the 
ciphertext, GCM tag, nonce, AAD, and the KEK-
wrapped DEK. 

When the smart contract emits an Approval event 
for {caller, dataset_id, block_number}, the off-chain 
gateway verifies event inclusion and finality on the 
permissioned chain, checks caller identity/MFA, and 
issues a single-use, time-boxed token to unwrap the 
DEK inside the KMS/HSM. Tokens are origin-bound 
(mTLS) and logged. Denials are logged symmetrically. 

KEKs have a short cryptoperiod; rotation is 
orchestrated by the KMS/HSM. On rotation, wrapped 
DEKs are re-wrapped under the new KEK; high-value 
objects may be re-encrypted under fresh DEKs 
opportunistically (background rekeyer) with old 
wrapped DEKs securely destroyed. This limits blast 
radius if a KEK is later compromised. 

Transport uses TLS 1.3 with ephemeral ECDHE, 
providing forward secrecy in transit. At rest, per-object 
DEKs ensure that compromise of any single DEK does 
not expose other objects. Compromise of a KEK does 
not reveal past plaintexts if (i) the KEK is rotated and 
old wraps are destroyed, or (ii) objects are re-encrypted 
under new DEKs during rotation. Operationally, we 
combine periodic KEK rotation, background rekeying, 
and strict audit to approximate forward secrecy over 
time for stored content. 

Nonces and integrity. GCM nonces are never 
reused; nonces are generated randomly and stored 
next to the ciphertext. GCM authenticates AAD; the on-

chain SHA-256 commitment is a provenance anchor 
that complements (not replaces) AEAD integrity. 

We commit the SHA-256 of the plaintext to support 
reproducible verification across re-encryptions; 
implementations may optionally include a public salt in 
the commitment record to harden against dictionary 
lookups on small, known files. 

2.4. Identity, Consent, and Access Workflow 

Real-world identities are mapped to blockchain 
addresses in a lightweight registry governed by the 
consortium. During onboarding, institutions attest to a 
user’s role and data-use agreements, binding those 
attributes to the user’s wallet address. Consent and 
policy are encoded as per-item allow-lists in the 
registry, which can be updated to grant, revoke, or 
time-box access. The typical flow begins when a 
consumer queries the ledger to discover a dataset and 
then submits a request. The contract verifies the 
caller’s address and the item’s policy. On approval, the 
event stream signals the off-chain gateway to release 
an object-specific decryption key; on denial, the 
contract logs the decision, which the detector later 
interprets in context [19]. On approval, the off-chain key 
gateway (not the smart contract) verifies 
inclusion/finality of the Approval event, authenticates 
the requester (MFA), and releases an origin-bound, 
single-use token that permits the client to unwrap the 
DEK inside the KMS/HSM. Key rotation and address 
recovery are supported by linking new addresses to 
existing identities under multisignature approval so that 
security hygiene does not break provenance [34]. 

2.5. Event Collection and Feature Construction 

Two log sources drive the anomaly detector: 
blockchain events and storage access logs. The first 
captures all consequential control-plane activity, 
including registrations, grants, denials, approvals, and 
administrative actions; the second records data-plane 
behavior such as successful fetches, bytes served, 
latency, throttling, and failed retrievals. To preserve 
privacy, user and dataset identifiers are 
pseudonymized with keyed hashing before feature 
construction [24,25]. Each raw event is standardized, 
timestamped, and enriched with rolling aggregates 
such as requests per unit time and denial ratios. Time-
of-day is encoded with circular features to capture 
diurnal rhythms. For sequence modeling, events are 
grouped into fixed-length windows in temporal order, 
both per user. Windows are built with stride one to 
enable early detection while keeping adjacent samples 
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highly overlapping; data leakage is prevented by 
constructing train, validation, and test sets on disjoint 
time intervals and disjoint user cohorts.  

The IDS runs as a log-consumer service (one per 
consortium or per site) that subscribes to contract 
events and storage logs. It emits alerts to an operator 
console and an orchestration hook that can trigger 
throttling or contract pausability. The IDS does not gate 
key release directly; instead, alerts inform operators 
and automated guards that act via well-defined 
controls. 

2.6. LSTM Intrusion Detection Model 

The detector uses a compact two-layer Long Short-
Term Memory (LSTM) followed by a sigmoid classifier 
[36]. Categorical tokens such as event type, 
pseudonymous user, and dataset identifier are 
embedded into dense vectors and concatenated with 
numerical features comprising rate, volume, inter-
arrival, denial fraction, latency, and time encodings. 
The first LSTM layer captures short-range 
dependencies within an access burst; the second 
abstracts higher-level patterns across mixed event 
types. Layer normalization and dropout reduce 
covariate shift and overfitting, and focal modulation can 
emphasize hard positives in rare-event settings [26–
28]. The model outputs an anomaly probability for each 
window. Because anomalies are rare, the training 
objective uses class weighting or focal modulation to 
emphasize hard positives without inflating false 
positives. Inference runs continuously on streaming 
windows; when the output crosses a calibrated 
threshold, the system emits an alert with the 
responsible address, the implicated datasets, and the 
causal sequence fragment to support triage. 

2.7. Training Procedure and Thresholding 

To learn realistic boundaries, the detector is trained 
on a mixture of benign sequences and synthetically 
injected attacks that mirror adversary goals observed in 
data-sharing systems. Benign sequences arise from 
replayed traces of human-scale analytics with small 
batches and idle periods. Attack sequences comprise 
rapid-fire retrievals from a compromised account, 
repeated requests for unauthorized items designed to 
elicit denials, and low-and-slow patterns that mimic 
normal cadence while gradually increasing volume. 
The dataset is partitioned chronologically into train, 
validation, and test splits, with users held out to assess 
generalization across principals. Optimization uses 
Adam with early stopping on average precision to avoid 

overfitting to a specific operating point; operating 
characteristics are reported with precision, recall, F1, 
and area under the precision–recall curve, which is 
preferred for imbalanced data [29,30]. The alert 
threshold is set on a purely benign validation set to 
bound false alarms per day to an operationally 
acceptable rate; operating characteristics such as 
precision, recall, and mean time to first alert are then 
evaluated across the full test set, independent of 
threshold tuning. 

2.8. Workload Generation and Attack Scenarios 

We emulate a consortium in which a provider 
registers approximately one hundred gene-expression 
files as representative omics payloads and grants 
access to a dozen analyst accounts. Normal activity 
balances exploratory browsing and targeted retrieval, 
modeled with inhomogeneous Poisson arrivals to 
capture business-hour concentration and occasional 
evening work. The integrity threat model modifies a 
small fraction of stored objects after registration 
through byte-level edits and label swaps. The 
behavioral threat model includes three scenarios. In the 
burst exfiltration case, a compromised credential drives 
dozens of accesses within a few minutes, often still 
within nominal rate caps but outside human cadence. 
In the probing case, an actor repeatedly requests 
datasets they are not authorized to see, generating 
sequences of denials interleaved with legitimate 
activity. In the low-and-slow case, an attacker paces 
requests just under typical rates over extended periods, 
attempting to evade both rules and naive anomaly 
detectors. 

2.9. Evaluation Protocol and Metrics 

Evaluation focuses on both security efficacy and 
operational cost. Integrity efficacy is measured as the 
fraction of modified objects rejected by client-side 
verification on first access and during periodic 
attestation runs; because verification is cryptographic, 
the expected ideal is complete detection. Behavioral 
efficacy is measured with precision, recall, F1 score, 
and area under the precision–recall curve computed 
over attack windows, alongside mean time to first alert 
from the start of an attack sequence. Operational cost 
is measured as false alarms per day on purely benign 
sessions, smart-contract latency and throughput under 
realistic gas limits, and detector inference time on 
commodity CPUs. To contextualize gains, a rules-only 
baseline that enforces fixed per-user caps and simple 
counters is evaluated under identical workloads. 
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Uncertainty in summary metrics is reported using 
bootstrap resampling over independent sessions, and 
all model selection decisions are confined to the 
training and validation partitions [31]. 

2.10. Implementation and Reproducibility 

Smart contracts are implemented in modern Solidity 
and statically analyzed with off-the-shelf tools to reduce 
common pitfalls [32,33]. The off-chain gateway 
validates contract events with typed signatures and 
enforces multifactor authentication before releasing 
keys [23]. The streaming pipeline subscribes to 
validator nodes via websockets, ingests storage logs, 
and materializes feature windows using a stateful 
stream processor [19]. The LSTM is implemented in a 
mainstream deep learning framework with reproducible 
seeds and versioned artifacts; trained weights, 
embeddings, and preprocessing code are archived 
alongside a workload generator that can recreate all 
figures and tables from a clean deployment. A one-click 
script provisions a fresh permissioned chain, deploys 
contracts, seeds accounts, replays workloads, and 
exports evaluation reports so that results can be 
independently verified without access to sensitive data. 

2.11. Governance, Safety, and Privacy Controls 

The system integrates governance patterns aligned 
with institutional risk. Administrative operations such as 
contract upgrades, emergency pauses, and role 
assignments require multisignature approval [34]. Key 
rotation and account recovery are auditable and bound 
to real-world identities in the registry, ensuring 
continuity without weakening provenance guarantees. 
Logs, models, and features are retained under least-
privilege policies with scheduled deletion; identifiers 
used for modeling are pseudonymized with rotating 
secrets to reduce linkability [24,25]. Because integrity 
checks trigger at access time, a background attestor 
periodically recomputes Merkle proofs to surface 
dormant tampering [22]. Together, these controls help 
ensure that cryptographic guarantees and behavioral 
monitoring are complemented by operational 
safeguards that keep the platform usable and 
trustworthy at consortium scale. 

3. RESULTS 

3.1. Experimental Context 

We evaluated the proposed framework in a 
consortium-style setting that mirrors a realistic omics- 
sharing workflow. A data provider registered 

approximately one hundred gene-expression files as 
stand-ins for protected omics artifacts. Each file was 
stored off-chain as an encrypted object, while its SHA-
256 digest, provenance metadata, and access policy 
were committed to a permissioned Ethereum ledger. A 
cohort of twelve analyst accounts, mapped to wallet 
addresses via the identity registry, performed routine 
discovery and retrieval tasks over several days of 
simulated activity with diurnal rhythm and small 
analyst-sized batches. Throughout, the Long Short-
Term Memory (LSTM) detector consumed a unified 
stream of blockchain events and storage access logs, 
scoring sliding windows for anomalies without 
interfering with normal operations. Two families of 
adversarial behavior were injected: integrity tampering 
and behavioral misuse. 

3.2. Integrity Verification 

The integrity mechanism yielded a binary, self-
verifiable signal at the point of use. Whenever a 
consumer retrieved a tampered object, client-side 
recomputation of the SHA-256 digest failed to match 
the on-chain commitment, and the object was rejected. 
Across byte-level edits, header manipulations, and 
label swaps deliberately crafted to be subtle, detection 
was perfect: all altered artifacts were identified as 
inconsistent on first access, corresponding to 100% 
tamper detection. This behavior is consistent with the 
avalanche property of cryptographic hashing and is 
valuable in practice because it removes reliance on a 
trusted log server or centralized auditor; any participant 
can independently verify that the file being analyzed is 
exactly the one originally registered. Integrity checking 
also surfaced provenance value beyond simple 
pass/fail: the immutable registration record tied each 
dataset to a specific uploader, time, and policy state, 
making any subsequent investigation of suspicious 
changes straightforward and auditable. 

3.3. Intrusion Detection Performance 

The LSTM-based intrusion detector substantially 
improved the visibility of misuse patterns over a rules-
only baseline. Trained on benign sequences 
augmented with synthetic attack windows, the model 
achieved high precision while retaining sensitivity to 
diverse behaviors. Across the full test period, attack 
windows were flagged with 95% precision and 90% 
recall, producing an F1 score near 0.92 under the 
natural class imbalance of the workload. False alarms 
were rare; using a threshold calibrated on a purely 
benign validation split, the detector held the false-alarm 
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rate to approximately 1% of scored windows. In 
practical terms, analysts and operators encountered 
few spurious notifications during normal peaks, yet the 
system reacted rapidly when behavior departed from 
learned norms. In the burst-exfiltration scenario—about 
fifty rapid retrieval attempts by a compromised account 
within several minutes—the anomaly score rose within 
the first dozen events, and the alert preceded most of 
the attempted downloads, enabling policy actions such 
as throttling or temporary suspension before large-
scale exfiltration. 

3.4. Comparative Baseline 

To contextualize these results, we implemented a 
baseline detector that mirrors what many research 
groups deploy today: static per-user rate caps and 
simple counters without sequence modeling or 
cryptographic integrity. Under identical workloads, the 
baseline exhibited two operational pathologies. First, 
precision degraded during legitimate busy hours 
because normal micro-bursts frequently crossed static 
thresholds; this manifested as ~80% precision and a 
visibly higher alert volume during benign peaks. 

Second, recall suffered for stealthier attacks that 
stayed just under caps or distributed activity over time, 
yielding roughly ~75% recall overall. Most critically, in 

Table 2: Detection and Integrity Performance 

Metric Proposed (Blockchain+LSTM) Baseline (rules-only) 

Precision (attack detection) 95% ~80% 

Recall (attack detection) 90% ~75% 

F1 score ~0.92 ~0.77 

False-alarm rate (FAR) ~1% of windows ~5% of windows 

Data tampering detection 100% (all changes detected) 0% (undetected) 

Integrity preservation Immutable on-chain record Vulnerable (mutable DB) 

 

 
Figure 2: Access-rate time series and detected attack window. The blue curve shows requests per minute over one hour. 

 
Figure 3: Detection performance comparison between the 
proposed Blockchain+LSTM framework and the rules-only 
baseline, reporting Precision, Recall, F1, and False-Alarm 
Rate.  
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the absence of cryptographic commitments, the 
baseline had no mechanism to detect silent storage-
layer modification; tampered files appeared clean until 
downstream scientific inconsistencies prompted 
manual investigation. The side-by-side comparison 
illustrates these differences succinctly: the proposed 
framework operates at a more favorable point on the 
precision–recall trade-off and adds a hard integrity 
guarantee that the baseline cannot emulate. 

3.5. Alert Latency and Operator Impact 

Because the detector scores rolling windows in 
event time rather than waiting for fixed counters to trip, 
mean time to first alert was short relative to the pace of 
data transfer. In the exfiltration case, the first alert 
typically fired after the 10th–12th request, leaving a 
meaningful runway to intervene before the majority of 
objects were fetched. In routine use, the system was 
quiet; the combination of calibrated thresholding and 
sequence context suppressed alerts for benign outliers 
such as small batch scripts or occasional after-hours 
work. Every alert arrived with immutable context from 
the chain—who requested what, which policy path 
authorized or denied the request, and which sequence 
of approvals and denials preceded the anomaly—
reducing the cognitive load during triage and 
accelerating root-cause analysis. 

3.6. System Overhead, Latency, and Throughput 

We quantified the operational cost of the security 
controls to ensure the approach is compatible with day-
to-day research. On the ledger, registering a dataset 
consumed on the order of 1.2 million gas and an 
access check around 200 thousand gas. In the 
permissioned network, this translated to a few seconds 
of control-plane latency per transaction, negligible 
relative to the time to transfer MB-scale files. 
Throughput in the 10–20 transactions/second range 
was comfortably sufficient for the observed access 
cadence because omics workloads are human-driven 
rather than machine-generated. On the analytics side, 
the detector’s inference path—feature assembly, 
embedding lookups, and two LSTM layers—ran in well 
under a second on commodity CPUs, and the 
streaming pipeline did not become a bottleneck under 
peak logging rates. From the analyst’s perspective, 
perceived latency remained dominated by storage I/O, 
not by the integrity or monitoring layers. All gas and 
latency measurements were obtained on Hyperledger 
Besu (vX.Y), IBFT 2.0, block time 2 s, 4 validators, 

Solidity v0.8.Z with optimizer (200 runs); registration 
consumed ≈1.2 M gas; access checks ≈200 k gas. 

3.7. Ablations and Sensitivity 

We conducted lightweight ablations to understand 
which elements contributed most to performance. 
Removing denial-ratio and inter-arrival features 
reduced recall against probing attacks, underscoring 
the value of explicit temporal context. Shortening the 
window length below ten events increased false alarms 
because the model lost enough temporal signal to 
separate benign micro-bursts from malicious bursts. 
Conversely, extending the window beyond twenty 
events produced marginal gains at the cost of slightly 
longer detection delay. Replacing the LSTM with a 
feed-forward network over window-aggregated 
statistics degraded recall across all attack types, 
suggesting that the sequential inductive bias is 
important even for relatively short horizons. Finally, 
switching off the on-chain rate-limit guardrails had little 
effect on detection metrics but increased the number of 
requests that could be attempted before an alert fired; 
this reinforces the defense-in-depth posture in which 
simple contract-level limits constrain the search space 
while the sequence model distinguishes misuse from 
legitimate spikes. 

3.8. Error Analysis and Residual Risks 

Despite strong overall performance, one class of 
adversarial behavior proved more challenging: carefully 
staged low-and-slow exfiltration that hews closely to a 
user’s historic rhythm while incrementally ratcheting 
volume over extended intervals. In these cases, 
detection often required longer context than a single 
short window could provide, and a small fraction of 
attack windows were missed. Increasing the window 
length or aggregating evidence across overlapping 
windows improved sensitivity but slightly raised false 
alarms. This trade-off suggests two practical 
mitigations for deployments at scale: scheduled 
retraining to capture evolving benign rhythms as teams 
change their workflows, and a secondary detector that 
aggregates per-user anomaly scores over longer 
periods to surface small but persistent deviations. We 
also note residual non-algorithmic risks inherent to any 
blockchain-based system, such as key theft or 
misconfigured policies. The governance controls—
multisignature administration, pausability, and auditable 
key rotation—proved useful during simulated incident 
drills, but formal audits and hardware-backed key 
custody remain advisable for production rollouts. 
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4. DISCUSSION 

4.1. Principal Findings 

This study demonstrates that a defense-in-depth 
design uniting an immutable ledger with sequence-
aware monitoring can materially raise the security 
baseline for omics data sharing without disrupting 
analyst workflows. The blockchain layer delivered a 
categorical guarantee at the object boundary: every 
post-registration modification was revealed at 
verification time, yielding perfect tamper detection in 
our evaluation [6,22]. The Long Short-Term Memory 
(LSTM) detector complemented this with high-fidelity 
behavioral oversight, achieving strong precision and 
recall under realistic, human-paced access patterns 
[12]. Together, these layers addressed distinct but 
interlocking risks—cryptographic integrity for data-
centric attacks and temporal anomaly detection for 
misuse that would otherwise pass formal access 
checks—while keeping latency and cost within practical 
limits for research operations [11]. 

4.2. Interpretation of Security Efficacy 

The integrity result is unsurprising in theory but 
powerful in practice: anchoring content digests on a 
consortium ledger transforms integrity checks from a 
best-effort log comparison into a cryptographic proof 
verifiable by any participant [6,22]. This reframes 
reproducibility: analysts can attest that inputs match the 
committed artifacts, and any deviation becomes an 
auditable event rather than a disputable claim. The 
behavioral detector’s gains stem from modeling how 
legitimate work unfolds over time. A windowed LSTM 
captures cadence, burstiness, and alternation of 
approvals/denials better than static counters. That is 
why the system alerted early during rapid exfiltration 
and remained quiet during benign micro-bursts [12]. 
The two layers are not redundant: the ledger cannot 
judge intent, and the IDS cannot certify content; 
security emerges from their composition. 

4.3. Operational Implications 

From an operator’s standpoint, the most 
consequential property is not a single metric but the 
shape of the detector’s errors. High precision at a 
conservative threshold translates into few spurious 
alerts during busy hours, preserving trust in 
notifications and avoiding fatigue. Early alerts—emitted 
after a handful of suspicious actions—create a window 
for throttling or quarantine before damage accrues. 

Meanwhile, the ledger’s immutable trail supplies instant 
context for triage: which address, which dataset, which 
policy path, and which sequence of events led to the 
alert. In aggregate, incident response shifts from 
inference over mutable logs to verification against a 
shared, append-only record, shortening time-to-contain 
and simplifying post-mortems [7,30]. 

4.4. Comparison with Conventional Controls 

Rules-only deployments—fixed per-user caps and 
counters—are attractive for their simplicity but struggle 
at both ends of the spectrum. They over-alert during 
legitimate peaks because they lack sequence context, 
and they under-alert during low-and-slow misuse that 
sits below thresholds. They also lack a first-class 
integrity primitive: silent storage-layer modification 
looks benign until downstream analyses fail. Our 
results show that adding cryptographic commitments 
eliminates that class of risk and that even a compact 
sequence model outperforms static rules on the 
precision–recall frontier [12,22,30]. Importantly, we do 
not advocate replacing simple rules; lightweight 
contract-level rate limits remain valuable guardrails that 
constrain attacker search space and complement the 
IDS [18]. 

4.5. Governance, Identity, and Consent 

Security properties in a multi-institution setting 
ultimately rest on governance. Mapping real- world 
identities to wallet addresses, supporting key rotation 
and account recovery, and requiring multisignature 
authorization for sensitive administrative actions are as 
important as model hyperparameters [34]. In our 
prototype, plausibility enabled safe incident drills, and 
typed event signatures simplified downstream 
validation [18,23]. Consent and data-use restrictions 
can be encoded as per-item policies, changed 
transparently over time, and audited in perpetuity. This 
auditability is not merely bureaucratic: it makes it 
harder for insiders to repudiate actions and easier for 
external reviewers to verify that access conformed to 
declared rules. 

4.6. Limitations and Threat Surface 

Three limitations merit emphasis. First, detection of 
carefully staged low-and-slow exfiltration remains 
challenging. If an attacker shadows a user’s historic 
tempo, short windows carry little discriminative signal; 
longer windows or score aggregation improve 
sensitivity but can erode precision. Periodic retraining 
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on evolving benign rhythms and a secondary, slower-
time- scale aggregator are practical mitigations. 
Second, integrity verification triggers at access time; 
absent background attestation, corruption can lie 
dormant. A scheduled attestor that recomputes Merkle 
proofs over collections reduces this dwell time [22]. 
Third, the blockchain layer introduces non-algorithmic 
risks: key theft, policy misconfiguration, and contract 
bugs. Role-based controls, hardware-backed keys, 
formal audits, and conservative contract patterns are 
necessary complements to the design [17,18]. We also 
assumed honest-majority consensus in a permissioned 
network; validator collusion, while unlikely in a 
governed consortium, would weaken guarantees and 
should be addressed with diverse operators and 
external checkpoints [15,16]. 

4.7. External Validity and Generalizability 

Our workload mirrored analyst-paced research 
access over MB-scale files; clinical pipelines or near- 
real-time decision support may impose tighter latency 
budgets and different rhythms. Nonetheless, the 
architectural split—hashes and policies on chain, bulk 
data off chain, and sequence monitoring over unified 
logs—generalizes. The content type is largely 
orthogonal: proteomics tables, imaging derivatives, or 
multi-omics bundles can be hashed and verified in the 
same way; the detector consumes usage, not payload. 
For larger consortia, the throughput of a permissioned 
Ethereum network is ample for control-plane 
transactions, but higher-frequency environments may 
benefit from layer-2 batching or a dual-chain 
architecture partitioning identity/consent from access 
logging. Cross-site deployment also invites federated 
variants of the IDS to learn from diverse rhythms 
without centralizing raw logs. 

4.8. Relation to Prior Work 

Prior blockchain-for-genomics systems emphasize 
immutability, consent, and provenance but rarely 
integrate live misuse detection; conversely, intrusion 
detection for healthcare networks often focuses on 
packet-level traffic rather than application-level data 
sharing. Our contribution is to show that these strands 
are synergistic in the omics setting: a ledger supplies 
ground truth for objects and policies, while a sequence 
model distinguishes misuse from legitimate flows atop 
that ground truth [8,9,13]. The result is a platform that 
can both prove what data are and judge how they are 
used, moving beyond perimeter defenses and mutable 
audit logs [43]. 

4.9. Toward Production and Future Enhancements 

Several engineering extensions follow naturally. 
Merkle-root commitments for collections reduce gas by 
enabling batched verification and efficient attestation 
[22]. Zero-knowledge proofs could let clients 
demonstrate integrity or authorization predicates 
without revealing identifiers, further tightening privacy 
[39]. On the behavioral side, transformer-based 
sequence models may capture longer-range 
dependencies at similar inference cost [40], while 
graph neural networks over the user–dataset bipartite 
graph could surface structural anomalies (e.g., sudden 
expansion of a user’s neighborhood). Federated or 
split-learning variants would allow sites to collaborate 
on IDS improvements without exchanging raw logs, 
potentially coordinated via the ledger itself. Finally, 
upgrading lifecycle cryptography to post-quantum 
schemes for key exchange and signing aligns the 
platform with long-horizon genomic privacy 
requirements [41,42]. Beyond omics, adjacent threads 
in our program suggest practical extensions that plug 
directly into this framework: model-layer tamper signals 
from quantum-gradient-descent defenses could stream 
into our IDS to catch adversarial fine-tuning in real 
time, hardening downstream analytics that consume 
LLM outputs [36]. On the cryptography side, an AI-
sensing, post-quantum key management plane can 
drive threat-adaptive rotation and algorithm agility at 
the contract gateway, aligning our ledger with PQC 
readiness. Quantum-enhanced learners that already 
outperform classical baselines in cancer typing and 
molecular property prediction motivate secure, 
auditable model serving over our notarized data 
channels [37,38]. At the clinical edge, an agentic, 
voice-driven EHR interface can front our access layer 
so clinicians query consent-governed datasets with 
provenance-backed responses. Finally, multi-institution 
resources such as a centralized nutrigenomics 
database illustrate why fine-grained consent, 
immutable integrity, and behavioral monitoring must 
travel together as these platforms scale [44]. 

4.10. Ethical and Privacy Considerations 

A persistent concern is secondary leakage through 
monitoring features. Our pipeline pseudonymizes 
principals, coarsens time, and restricts exported 
metrics to aggregates. Because the IDS reasons about 
patterns of access rather than content, it can operate 
under strict data-handling regimes. Still, transparency 
with participants matters: documenting what is logged, 
how anomaly scores are used, and how long records 
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are retained builds trust and facilitates compliance with 
data-protection law. Right-to-erasure remains 
compatible with the design: deleting off-chain objects 
and expiring permissions satisfies data removal 
requirements, while residual on-chain digests—
essentially random commitments—retain audit utility 
without exposing content [24,25]. 

4.11. Synthesis and Implications 

The key lesson is that security for scientific data is 
not a single mechanism but a composition of 
cryptographic guarantees, behavioral modeling, and 
governance. Hash-anchoring raises the bar for 
integrity, converting silent corruption into detectable 
events; sequence modeling elevates detection beyond 
brittle rules, offering timely, high-confidence alerts; and 
transparent governance ensures that controls survive 
turnover, incidents, and adversarial pressure. For 
omics consortia, this composition translates into 
reproducible pipelines with audit-ready provenance and 
a monitoring layer tuned to human workflows. For 
institutions, it offers a tractable path to measurable risk 
reduction without a wholesale re-architecture of storage 
or analysis stacks. By aligning security primitives with 
the realities of research operations, the framework 
demonstrates that stronger guarantees need not come 
at the expense of usability—and that, in the high-stakes 
context of biomedical data, such guarantees are both 
feasible and necessary. 

5. CONCLUSIONS 

We show that pairing an immutable, consent-aware 
ledger with sequence-aware monitoring provides 
practical, defense-in-depth security for omics sharing: 
Ethereum smart contracts guarantee provenance and 
tamper evidence at the object boundary, while an 
LSTM IDS detects misuse with high fidelity and low 
operational noise. The approach adds minutes-scale 
overhead at most, aligns with consortium governance, 
and improves auditability and reproducibility. 
Remaining risks—low-and-slow exfiltration, key 
custody, and contract hygiene—are tractable with 
periodic attestation, federated/long-horizon detectors, 
and hardened operational controls. This work offers a 
deployable path to trustworthy, privacy-preserving 
bioinformatics at scale. 
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