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Abstract: As cloud computing infrastructures increasingly depend on reliable operation, proactively detecting anomalies 
in system logs becomes indispensable. Conventional log analysis techniques often produce high false-alarm rates and 
exhibit limited semantic understanding. To address these limitations, we developed an unsupervised anomaly detection 
framework that leverages fine-tuned RoBERTa-base model embeddings to capture contextual patterns within 
OpenStack log event sequences. We apply a crucial filtering step to remove high-frequency, non-discriminatory events, 
ensuring our models learn from nuanced contextual signals rather than simple indicators. From these refined sequences, 
we construct a custom vocabulary and fine-tune RoBERTa with Parameter-Efficient Fine-Tuning (PEFT) using LoRA. 
These contextualized embeddings inform unsupervised classifiers, including Isolation Forest and One-Class SVM, 
trained solely on normal data. Our approach demonstrates excellent and robust performance on a holdout test set 
(Anomaly F1-Score up to 0.97), significantly outperforming traditional LSTM-based baselines on the same task. These 
results demonstrate that contextualized transformer embeddings provide a powerful and resilient foundation for log-
based anomaly detection, reducing false alarms and improving detection accuracy in complex cloud environments. 
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1. INTRODUCTION  

As cloud computing infrastructures continue to scale 
and support critical applications, real-time monitoring of 
system health through log analysis has become 
essential. System logs offer rich operational data, yet 
traditional log-mining solutions, often relying on 
template-based parsing or statistical methods like PCA, 
frequently struggle with high false-alarm rates and a 
lack of semantic depth needed to detect nuanced 
deviations in event sequences [1-4].  

Recent advances in deep learning, particularly 
transformer-based language models, present a 
significant opportunity to overcome these challenges. 
For instance, LogBERT demonstrated that fine-tuned 
BERT embeddings can capture contextual 
dependencies within log messages, outperforming 
classical baselines on public datasets [5]. Furthermore, 
Parameter Efficient Fine-Tuning (PEFT) techniques 
enable the application of large language models to log 
mining with reduced computational overhead while 
achieving competitive performance [6].  

Despite these advancements, many studies focus 
on benchmark datasets like HDFS and BGL, leaving 
cloud-native platforms such as OpenStack, a widely 
adopted, complex, and mission-critical infrastructure, 
relatively underexplored by these sophisticated 
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semantic approaches. While some work on OpenStack 
logs has employed methods like Robust PCA [4] to 
achieve respectable detection, such statistical 
approaches often do not fully leverage the sequential 
and semantic richness inherent in log instance 
streams. This gap is compounded by the known 
variability in log template extraction quality across 
different sources [1-3], underscoring the critical need 
for methods that integrate robust log parsing with deep 
contextual modeling, especially for multifaceted 
systems like OpenStack.  

At the same time, there remains a broader gap in 
how these methods contribute to the security and 
forensic value of logs. In operational environments, 
especially within Security Operations Centers (SOCs), 
excessive false alarms increase analyst fatigue and 
extend mean time to respond. Moreover, limited 
contextual understanding of log sequences weakens 
the ability to reconstruct incident timelines or trace 
abnormal behaviors in forensic analysis. Bridging this 
methodological gap is therefore crucial not only for 
improving detection accuracy but also for strengthening 
cyber defense and post incident response capabilities 
in cloud infrastructures.  

This paper addresses these challenges by 
presenting an unsupervised anomaly detection 
framework specifically tailored for OpenStack system 
logs (illustrated in Figure 1). We begin by applying the 
Drain algorithm to parse raw logs into instance level 
event sequences. From a dataset of 5,452 such 
sequences, we then construct a domain-specific 
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vocabulary and fine-tune a RoBERTa-base model 
using PEFT (LoRA) with Optuna-driven 
hyperparameter search. This process yields 
contextualized 768-dimensional embeddings. Finally, 
we feed these embeddings into Isolation Forest and 
One-Class SVM classifiers, trained exclusively on 
normal data. Our approach significantly reduces false 
alarms and improves detection accuracy across 
diverse OpenStack failure scenarios, outperforming 
traditional template- and PCA-based baselines and 
demonstrating the power of contextualized embeddings 
for this domain. 

2. TRAINING METHODS  

This section details the comprehensive 
methodology we employed in our unsupervised 
anomaly detection framework. Our process 
encompasses dataset preparation, log preprocessing, 
RoBERTa-base model fine-tuning, contextual 
embedding extraction, and the training of anomaly 
detection classifiers.  

A. Dataset Preparation 

The dataset consists of instance-level event 
sequences parsed from raw OpenStack logs. We begin 
by loading the structured CSV outputs produced by the 
Drain parser (see Section II-B). This dataset includes 
four distinct log families:  

• Normal VM creation (openstack nova normal 
vm create): 4,944 instances • DHCP off 
(openstack nova dhcp off): 199 instances  

• Immediate VM destroy (openstack vm destroy 
immediately after create): 196 instances  

• Undefine VM after create (openstack nova un 
define vm after create): 113 instances  

This yields a total of 5,452 parsed log instances, 
each represented as an ordered sequence of event 

templates (or EventIDs). The distribution of these 
instances is shown in Figure 2.  

Before partitioning the data, we perform a crucial 
filtering step to enhance our evaluation. We first 
analyzed the event frequency across all log types and 
identified two high-frequency event IDs that acted as 
overly strong, simplistic discriminators between normal 
and abnormal sequences. To ensure our models learn 
from broader contextual patterns rather than relying on 
these “telltale” events, we remove them from all 
sequences. This step creates a more challenging and 
realistic detection scenario, testing the model’s ability 
to understand nuanced event relationships.  

We label each log instance as “normal” or 
“anomaly” based on its source family. Subsequently, 
we perform an 85/15 stratified split of the entire 
dataset, carefully preserving the original class 
proportions. This split creates a development set of 
4,634 instances (4,202 normal, 432 anomaly) and a 
holdout test set of 818 instances (742 normal, 76 
anomaly). We use stratified sampling on the instance 
labels to ensure a balanced representation of each 
failure scenario in both subsets.  

Finally, we serialize the development and test splits 
into NumPy archives (.npz files). These archives store 
the event sequence arrays and their corresponding 
label vectors, facilitating efficient data loading for 
subsequent model fine-tuning and evaluation.  

B. Preprocessing  

Our preprocessing pipeline (Figure 3) transforms 
raw OpenStack log files into structured event 
sequences suitable for transformer modeling. First, we 
ingest the raw logs. We apply a regular expression that 
matches the start of each log entry (timestamp + level). 
Any subsequent lines not matching this pattern are 
concatenated to their predecessor with a literal “\n” 
separator; this step preserves multi-line traces and 
wrapped messages as single logical events. 

 
Figure 1: Overview of the proposed unsupervised anomaly detection framework for OpenStack logs using fine-tuned RoBERTa 
embeddings. This diagram illustrates the end-to-end workflow: raw OpenStack logs are first parsed with the Drain algorithm to 
extract structured event templates. After filtering high-frequency events, sequences of EventIDs are generated per VM instance. 
These sequences are used to build a custom vocabulary and fine-tune a RoBERTa-base model with Parameter-Efficient Fine-
Tuning (LoRA). The resulting contextual embeddings are then used to train Isolation Forest and One-Class SVM detectors, 
which classify unseen log sequences as normal or anomalous. 
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Next, we parse these consolidated logs using the 
Drain algorithm. Drain clusters raw messages into 
templates (e.g., “VM instance <ID> started”) and emits 
structured CSV files. For each event, these files 
contain fields such as EventId (a unique string identifier 
assigned to each template, e.g., “E12345”) and 
ParameterList (containing extracted variables like 
instance IDs).  

To reduce noise and improve template 
generalization, we replace variable content, such as 
numeric values, UUIDs, IP addresses, and other free-
form parameters, with generic placeholders like 
<NUM> and <ID> via regex before parsing with Drain.  

Following parsing, we construct per-instance 
sequences. We group together all events sharing the 
same instance value (extracted from the ParameterList 
column) and order them by timestamp. This process 
results in ordered lists of string EventIds for each VM 
lifecycle. At the end of this stage, each log instance is 
represented as a sequence of string-based EventId 
tokens (representing log templates), which serve as 
input for the subsequent vocabulary construction and 
model fine-tuning.  

C. Vocabulary Construction  

We construct a custom vocabulary exclusively from 
the development set (4,634 instances) to prevent data 
leakage from the holdout test set. First, we aggregate 
all event sequences within the development set. Then, 
we identify all unique string EventId tokens (e.g., “E5”, 
“E23”) present across these sequences. The 
vocabulary comprises these unique EventIds plus five 
standard special tokens: [PAD], [UNK], [CLS], [SEP], 
and [MASK]. We assign a unique integer index to each 
unique EventId string and each special token. This 
process yields a final vocabulary of 369 tokens. We 
serialize the resulting vocabulary dictionary, which 
maps string tokens to integer indices, to a JSON file 
(event_vocab_dev.json) for use during model fine-
tuning and embedding extraction. 

D. Masked Language Model Fine-Tuning  

To adapt the transformer to OpenStack event-
sequence semantics, we fine-tune a pretrained 
RoBERTa-base model with a Masked Language 
Modeling (MLM) objective, as illustrated conceptually in 
Figure 4. First, we resize the model’s vocabulary and 

 
Figure 2: Distribution of log instances across normal and anomaly categories in the full OpenStack dataset. The bar chart 
shows the number of parsed VM lifecycle instances belonging to each event family: 4,944 normal VM creations and three 
anomaly types: 199 DHCP-off, 196 immediate-destroy, and 113 undefine-after-create cases, yielding a total of 5,452 instances 
used for model development and testing. 

 
Figure 3: Log preprocessing pipeline transforming raw OpenStack logs into structured EventID sequences. The pipeline 
consolidates multi-line messages, applies the Drain log parser to produce structured templates, replaces variable content (e.g., 
UUIDs, IP addresses) with placeholders, and groups events by VM instance. The ordered sequences of EventIDs produced at 
the end of this process form the tokenized input for vocabulary construction and RoBERTa fine-tuning. 
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embedding layer to accommodate our custom 369 
token event-ID vocabulary. 

 
Figure 4: Masked Language Model (MLM) fine-tuning 
objective applied to the RoBERTa-base model for EventID 
sequences. During training, approximately 15 % of EventIDs 
in each sequence are randomly masked, and the model 
learns to predict them based on surrounding context. This 
self-supervised task enables RoBERTa to capture sequential 
and semantic relationships between log events, producing 
domain-adapted contextual embeddings for anomaly 
detection. 

The development set sequences which were 
tokenized into integer ID sequences by a custom 
tokenizer using the vocabulary built in the previous 
step, are padded or truncated to a fixed length of 64. 
These sequences are stratified into a 90% training 
subset (4,170 instances) and a 10% validation subset 
(464 instances). We employ PEFT via Low-Rank 
Adaptation (LoRA) [6] with parameters r=8, 
lora_alpha=32, and lora_dropout=0.1 applied to the 
query, key, and value projection layers of the 
transformer.  

During training, we mask 15% of tokens and 
optimize the standard MLM cross-entropy over masked 
positions.  

We tuned LoRA/optimizer settings with a brief 
Optuna search (5 trials, 5 epochs per trial), selecting 
the checkpoint with lowest validation loss. The best run 
used a learning rate of 6.17x10-4, batch size 32, weight 
decay ≈ 0.0237, and warmup ratio ≈ 0.1739. We then 
trained up to 10 epochs with early stopping (patience 3) 
and kept the best checkpoint (validation loss 0.3375). A 
concise summary is in Table 1. 

Table 1: MLM Fine-Tuning Summary 

Item Value 

Search budget 5 trials, 5 epochs/trial 

Mask rate 15% 

Best LR 6.17x10-4 

Batch size 32 

Weight decay ≈ 0.0237 

Warmup ratio ≈ 0.1739 

Early stopping Patience 3 (max 10 epochs) 

Best val. loss 0.3375 

 

E. Embedding Extraction 

After fine-tuning the Masked Language Model, we 
extract fixed-dimensional vector representations 
(embeddings) for each event sequence in both the 
development and holdout test sets. This process 
involves using the fine-tuned RoBERTa-base model 
obtained from the previous stage. The saved LoRA 
adapters are loaded and merged into the base model 
for efficient inference.  

For each sequence (represented as a list of string 
EventIds), we first apply a tokenization process specific 
to this stage using the custom vocabulary constructed 
previously. This involves prepending a [CLS] token and 
appending a [SEP] token to the sequence of integer 
IDs corresponding to the EventIds. We then pad or 
truncate the resulting sequence to a fixed length of 64 
tokens and generate an attention mask. We feed these 
processed sequences into the encoder part 
(specifically, the roberta attribute) of the fine-tuned 
RobertaForMaskedLM model, thereby bypassing the 
MLM prediction head. We use CLS pooling on the final 
encoder layer to obtain a 768-dimensional sequence 
embedding per instance.  

These 768-dimensional embeddings are generated 
for all instances in both the development and holdout 
test sets. We then save the resulting embedding 
arrays, along with their corresponding instance 
identifiers and labels, to separate NumPy archives 
(.npz files) for use in subsequent training and 
evaluation of anomaly detection classifiers.  

F. Anomaly Detector Training  

With the 768-dimensional embeddings generated 
for each instance, we train two unsupervised anomaly 
detection models using the development set: Isolation 
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Forest (IF) and One-Class Support Vector Machine 
(OCSVM). Crucially, both detectors are trained 
exclusively on the embeddings corresponding to 
normal instances (4,202 samples) from the 
development set, making the approach unsupervised. 
We tuned Isolation Forest (IF) and One-Class SVM 
(OCSVM) with Optuna, training on development-set 
normals only and selecting configurations that 
maximized anomaly F1 on the development split. The 
selected OCSVM used a linear kernel with !  ≈ 0.0575; 
IF used n_estimators = 400, max_samples ≈ 0.799, 
contamination ≈ 0.0107, max_features ≈ 0.681, and no 
bootstrap. The final models were refit on all normal 
embeddings from the development set. Table 2 
summarizes the search succinctly. 

A key difference between the two detectors lies in 
how they set the decision boundary for anomalies:  

• Isolation Forest (IF): After training, we compute 
decision_function scores on the development set 
(normal + anomaly) and choose the threshold 
that maximizes anomaly F1; this fixed threshold 
is then applied to the test set.  

• One-Class SVM (OCSVM): Uses its intrinsic 
boundary (controlled by !) and classifies via 
predict (+1 normal,-1 anomaly).  

Finally, the trained Isolation Forest model and its 
determined optimal threshold, along with the trained 
One-Class SVM model, are saved (.joblib files) for 
subsequent evaluation of the embeddings of the 
unseen holdout test set.  

3. EVALUATION METHODOLOGY  

We evaluate the final performance of our trained 
anomaly detection models on the unseen holdout test 
set. This set, comprising 818 instances (742 normal, 76 
anomaly), represents approximately 15% of the total 
dataset. We preserved its original class distribution via 
stratified sampling and ensured it was not used during 
any phase of model training or hyperparameter tuning. 

For evaluation, we use the precomputed 768-
dimensional embeddings from the holdout test set 

instances as input. We load the saved, optimally tuned 
Isolation Forest (IF) and One Class SVM (OCSVM) 
models.  

• For Isolation Forest, anomaly scores are 
obtained using the model’s decision_function. An 
instance is classified as anomalous if its score is 
below the optimal threshold determined 
previously during the post-hoc tuning step on the 
development set (threshold value ≈0.0000).  

• For One-Class SVM, classification is performed 
directly using the model’s prediction method. The 
output (-1 for anomaly, +1 for normal) is mapped 
to binary labels (1 for anomaly, 0 for normal).  

We assess model performance using standard 
metrics suitable for potentially imbalanced anomaly 
detection tasks. Our primary focus is on Precision, 
Recall, and F1-Score for the anomaly class (label=1), 
defined as: 

 

Where TP, FP, and FN are True Positives, False 
Positives, and False Negatives for the anomaly class.  

Additionally, we compute the Area Under the 
Receiver Operating Characteristic Curve (ROC-AUC), 
using the negated anomaly scores from each model’s 
decision_function as input for ranking instances. A full 
Classification Report (including accuracy and metrics 
for both classes) and a Confusion Matrix (True 
Negatives, False Positives, False Negatives, True 
Positives) are also generated. The evaluation metrics 
are calculated using the scikit-learn library.  

To further validate the robustness of our models’ 
performance on the holdout set, we conducted a 10-
fold stratified cross-validation. For this procedure, the 
holdout set was partitioned into 10 folds, preserving the 

Table 2: Detector Tuning Summary (Concise) 

Model Search Selected Config 

IF Optuna (50 trials) n estimators = 400, max samples ≈ 0.799, contam. ≈ 0.0107, max features ≈ 0.681, bootstrap = False 

OCSVM Optuna (75 trials) Linear kernel, ! ≈ 0.0575 
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class distribution in each. We then evaluated our 
single, optimally tuned IF and OCSVM models on each 
fold sequentially. This process allows us to assess the 
stability and consistency of the models’ performance 
across different subsets of the unseen data, ensuring 
that our reported metrics are not the result of a 
favorable, single partition. 

4. RESULTS AND DISCUSSION  

This section presents the performance of our 
unsupervised anomaly detection framework on the 
holdout test set. We first detail the quantitative results 
achieved by our RoBERTa embedding-based approach 
with Isolation Forest and One Class SVM. We then 
discuss the effectiveness of contextual embeddings, 
compare our work with related studies, analyze the 
performance of the two anomaly detectors, and 
acknowledge the limitations of our study. 

A. Quantitative Results  

We assessed the performance of our fine-tuned 
RoBERTa embedding approach, combined with 
optimized Isolation Forest (IF) and One-Class SVM 
(OCSVM) anomaly detection classifiers, on the unseen 
holdout test set (818 instances: 742 normal, 76 
anomaly). Tables 3 and 4 present detailed 
classification reports, including Precision, Recall, F1-
Score, and Support for both normal (0) and anomaly 
(1) classes for IF and OCSVM, respectively. For a 
compact, side-by-side summary that includes 
baselines, see Table 5.  

Both models achieve excellent overall accuracy (> 
0.99). For the crucial anomaly class, the Isolation 
Forest model yields an F1-score of 0.9744, driven by a 
perfect recall of 1.0000. The One-Class SVM also 
performs very well, achieving an F1-score of 0.9467. 
The ROC-AUC scores further confirm strong 
discrimination ability, with Isolation Forest achieving 
0.9952 and One-Class SVM achieving 0.9569. The 
separability of instances is illustrated in Figure 5. These 
results demonstrate that our contextual RoBERTa 
embeddings enable effective discrimination even when 
obvious indicator events are removed.  

To confirm the stability of these results, we 
performed a 10-fold cross-validation on the holdout set. 
The Isolation Forest model demonstrated exceptional 
consistency, achieving an average Anomaly F1-Score 
of 0.9749 ± 0.0308 and an average ROC-AUC of 
0.9950 ± 0.0062. The One-Class SVM was similarly 
stable, with an average Anomaly F1-Score of 0.9442 ± 
0.0757 and an average ROC-AUC of 0.9571 ± 0.0665. 
The low standard deviation across folds for both 
models validates that their high performance is robust 
and not an artifact of a specific data partition. 

B. Discussion: Effectiveness of Contextual 
Embeddings  

The quantitative results presented in Section IV-A 
strongly validate the use of fine-tuned RoBERTa 
embeddings for representing OpenStack log event 
sequences in anomaly detection. This performance 
represents a substantial improvement over traditional 
log analysis techniques like PCA, which often struggle 

Table 3: Classification Report for RoBERTa + Isolation Forest on Hold-Out Test Set 

Class Precision Recall F1-Score Support 

Normal (0) 0.9986 0.9946 0.9973 742 

Anomaly (1) 0.9500 1.0000 0.9744 76 

Accuracy   0.9951 818 

Macro Avg 0.9750 0.9973 0.9861 818 

Weighted Avg 0.9953 0.9951 0.9952 818 

 
Table 4: Classification Report for RoBERTa + One-Class SVM on Hold-Out Test Set 

Class Precision Recall F1-Score Support 

Normal (0) 0.9933 0.9959 0.9946 742 

Anomaly (1) 0.9595 0.9342 0.9467 76 

Accuracy   0.9902 818 

Macro Avg 0.9764 0.9651 0.9705 818 

Weighted Avg 0.9901 0.9902 0.9901 818 
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with system logs and yield lower F1-scores, whereas 
our approach delivered excellent F1-scores of 0.9744 
(Isolation Forest) and a robust 0.9467 (One-Class 
SVM) on the unseen holdout data. 

The key advantage of our approach stems from the 
ability of the fine-tuned transformer embeddings to 
capture rich semantic and sequential context. Unlike 
methods that treat logs as isolated events or rely solely 
on statistical distributions, the RoBERTa model, 
adapted via Masked Language Modeling on sequences 
of EventIDs, learns the typical patterns and 
relationships between events within an instance’s 
lifecycle. These 768-dimensional embeddings encode 
this contextual understanding, allowing the downstream 
anomaly detectors (IF and OCSVM) to effectively 
model the manifold of normal behavior. Anomalies, 
which often manifest as unexpected events, incorrect 
event ordering, or missing events within a sequence, 
result in embeddings that lie further from this normal 
manifold, enabling their successful identification. 

Furthermore, the domain adaptation achieved by 
fine-tuning RoBERTa specifically on the OpenStack 
EventID vocabulary likely contributes to this success, 
tailoring the representations to the specific operational 
language of this cloud platform. The high precision and 
recall observed for both detectors (Tables 3 and 4) 
suggest that these contextual embeddings provide a 
robust feature space that minimizes the false alarms 
and limited semantic understanding often associated 
with conventional methods. Therefore, the results 
strongly support the use of fine-tuned transformer 
embeddings as a powerful foundation for high-fidelity, 
unsupervised anomaly detection in complex system 
logs, such as those from OpenStack. 

C. Comparison with Baseline Models  

To rigorously evaluate the effectiveness and 
robustness of our contextual RoBERTa embeddings, 
we established a strong baseline using a traditional 
LSTM Autoencoder, a common method for sequential 
anomaly detection. We trained an LSTM Autoencoder 

on the normal log sequences from the development set 
to learn to reconstruct them. The encoder part of this 
trained model was then used to generate 128-
dimensional embeddings for all instances in both the 
development and holdout sets. The same Isolation 
Forest and One-Class SVM classifiers were then tuned 
and tested on these LSTM-based embeddings. 

The performance of these baselines on the filtered 
holdout test set reveals the significant advantage of our 
transformer-based approach (Table 5).  

The LSTM-based models struggle on this dataset, 
with the Isolation Forest baseline achieving an F1-
score of only 0.7956 and the OCSVM baseline 
collapsing to 0.5139. This indicates that while LSTMs 
can learn basic sequential patterns, they are not 
sufficient to capture the deep contextual information 
required when simplistic “telltale” event indicators are 
absent. In contrast, our RoBERTa-based models 
maintain state-of-the art performance, demonstrating 
their ability to learn from the entire sequence context. 
This directly validates that the contextual 
understanding provided by the fine-tuned transformer is 
superior and more resilient than the sequential pattern 
recognition of LSTMs for this task. 

D. Comparison with Related Work 

Our framework’s strong performance on the 
OpenStack holdout set (F1 > 0.94, Tables 3, 4) 
positions it favorably compared to related approaches 
in log-based anomaly detection, as summarized in 
Figure 6. 

LogBERT [5], which pioneered using BERT for this 
task via Masked Log Key Prediction and other self-
supervised objectives, reported F1-scores of 0.823 on 
HDFS, 0.908 on BGL, and 0.966 on the Thunderbird 
dataset using their combined training tasks. While 
direct comparison is limited due to dataset differences, 
our achieved F1-scores (0.9744 for IF, 0.9467 for 
OCSVM) are highly competitive and even exceed 
LogBERT’s performance on some standard 

Table 5: Performance Comparison with LSTM Autoencoder Baselines on the Filtered Holdout Set. 

Model Anomaly F1-Score ROC-AUC 

RoBERTa + IF 0.9744 0.9952 

RoBERTa + OCSVM 0.9467 0.9569 

LSTM + IF (Baseline) 0.7956 0.9696 

LSTM + OCSVM (Baseline) 0.5139 0.7514 
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benchmarks. This suggests that our approach of fine-
tuning RoBERTa with PEFT (LoRA) specifically on 
sequences of abstract EventIds is highly effective for 
capturing anomalous patterns within the structured 
sequences derived from OpenStack logs. 

When comparing our method to statistical 
techniques applied specifically to OpenStack logs, 
Kalaki et al. [4] utilized an improved Robust PCA 
(RPCA) approach on a dataset they generated. They 
reported an F1-score of 0.93 for their PRPCACS 
method (see Figure 4 in [4]). Although this represents a 
strong result for an RPCA-based technique, our 
framework achieved even higher F1-scores on our 
dataset. This difference further suggests that modeling 
sequential and contextual information via transformer 

embeddings offers a more powerful approach for 
discriminating anomalies in OpenStack event 
sequences than statistical matrix decomposition 
methods like RPCA. Despite their improvements, such 
statistical methods may not fully capture the nuanced, 
context-dependent patterns that our approach detects. 

Our adoption of PEFT (LoRA) aligns with recent 
research focusing on efficient log anomaly detection, 
such as the work by Lim et al. [6], who explored various 
PEFT techniques. Our results confirm that applying 
LoRA to a RoBERTa-base model, specifically adapted 
via MLM fine-tuning on EventID sequences, effectively 
achieves state-of-the-art performance for this 
OpenStack task. 

 
Figure 5: Anomaly-score distributions for normal (blue) and anomalous (orange) instances on the hold-out test set. Subfigure 
(a) shows scores from the Isolation Forest model, and (b) from the One-Class SVM. Lower scores correspond to higher 
anomaly likelihood, illustrating clear separability between normal and abnormal log sequences. 
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The success of our method inherently depends on 
the quality of the upstream log parsing provided by the 
Drain algorithm. As well-documented [1, 2], accurate 
and effective parsing is a critical prerequisite, and its 
challenges underscore this dependency. By focusing 
on OpenStack data, our work contributes to the 
evaluation of anomaly detection techniques on logs 
from modern, complex cloud systems, thereby 
addressing potential limitations of relying solely on 
older benchmark datasets [3]. 

In conclusion, our approach leverages domain-
adapted transformer embeddings via PEFT on parsed 
event sequences, demonstrating performance that is 
highly competitive with or exceeds state-of-the-art 
methods on various benchmarks, and appears 
significantly more effective than statistical techniques 
like RPCA when applied to OpenStack log sequences. 

E. Analysis of Anomaly Detectors (IF vs. OCSVM)  

Both Isolation Forest (IF) and One-Class SVM 
(OCSVM), when applied to the fine-tuned RoBERTa 
embeddings, proved highly effective, though they 
exhibited slightly different performance profiles (Tables 
3, 4). 

Isolation Forest achieved a marginally superior F1-
score (0.9744 vs. 0.9467) and ROC-AUC (0.9952 vs. 
0.9569), driven by a perfect recall of 1.0000. This 
suggests its ensemble-based isolation mechanism was 

slightly better at capturing the overall distribution 
variance between normal and anomalous embeddings, 
resulting in zero false negatives. 

Conversely, One-Class SVM achieved a slightly 
higher precision (0.9595 vs. 0.9500), resulting in fewer 
false positives (3 vs. 4). The linear kernel identified 
during hyperparameter optimization learned a tight 
decision boundary around the dense cluster of normal 
embeddings, excelling at minimizing false alarms but 
consequently misclassifying a few more anomalies. 

The difference in thresholding strategy (post-hoc 
optimal F1 for IF vs. intrinsic OCSVM boundary) also 
contributes to this performance trade-off. The ROC-
AUC, being threshold independent, confirms that IF 
has a stronger overall ranking ability on this dataset. 

Ultimately, the choice between them could depend 
on operational tolerance for false positives versus false 
negatives. However, the strong performance of both 
underscores the quality of the RoBERTa embeddings 
in creating a highly separable feature space for 
unsupervised anomaly detection. 

F. Implications for Cybersecurity Operations and 
Forensics  

The high-performance metrics achieved by our 
framework have direct and practical applications in 
addressing critical challenges within real-world 
cybersecurity operations. The modern Security 

 
Figure 6: Comparison of anomaly F1-scores between the proposed RoBERTa-based models and related methods. The bar 
chart compares RoBERTa + Isolation Forest and RoBERTa + One-Class SVM against LSTM Autoencoder baselines and prior 
studies such as LogBERT [5]. The results highlight the superior performance of the fine-tuned transformer embeddings on 
OpenStack logs. 
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Operations Center (SOC) is widely reported to be in a 
state of crisis, suffering from overwhelming alert 
volumes and high false-positive rates that lead to 
analyst burnout and missed threats [7], [8]. Our 
approach, particularly the Isolation Forest model 
achieving an Anomaly F1-score of 0.9744 with high 
precision, can serve as a powerful automated triage 
engine. By autonomously filtering many benign log 
sequences, it would dramatically reduce the low fidelity 
alert queue, directly combating the alert fatigue 
epidemic. This automation frees human analysts from 
repetitive, low-level tasks, enabling a strategic shift 
from a reactive “firefighting” posture to proactive threat 
hunting, where expert time is dedicated to investigating 
the high-confidence anomalies surfaced by the model 
[9]. 

Furthermore, in the context of post-breach Digital 
Forensics and Incident Response (DFIR), our method 
functions as a forensic accelerator. Traditional forensic 
analysis requires investigators to manually sift through 
massive volumes of historical log data to reconstruct an 
attack timeline, a process that is slow and prone to 
missing subtle indicators [10]. The superior contextual 
understanding of our RoBERTa-based model, which 
proved far more resilient than an LSTM, is particularly 
well-suited for uncovering the “low and slow” attack 
patterns characteristic of advanced persistent threats. 
These sophisticated attacks often consist of a 
sequence of seemingly benign events spread over long 
periods, which evade signature-based tools and simple 
sequential models [11]. By presenting investigators 
with a pre-computed and correlated set of all 
anomalous sequences, our framework provides a data-
driven starting point, enabling faster root cause 
analysis and a more complete and accurate 
reconstruction of the entire attack chain. 

G. Ethical and Legal Considerations  

As we note in our conclusion, a key interdisciplinary 
potential for this framework lies in its application to 
digital forensics and “legally defensible forensic 
reporting.” However, a significant ethical and legal 
barrier for any “black box” model, including our fine-
tuned RoBERTa, is its inherent opacity. For an 
automated alert to be truly “legally defensible,” the logic 
behind the judgment must be transparent, auditable, 
and explainable to a human investigator or a court.  

This creates a critical need for Explainable AI (XAI) 
to bridge this gap. A crucial area for future work is 
integrating methods to interpret these complex models. 

Techniques such as post-hoc rule extraction, which can 
generate human-readable rules for unsupervised 
models [12], or feature attribution methods that 
evaluate the contribution of each log event to an alert 
[13], are essential. Applying these XAI techniques 
would transform a statistical anomaly score into an 
actionable, defensible finding, thereby satisfying the 
legal and ethical demands for transparency. 

H. Limitations  

While our proposed framework demonstrates 
promising results, we acknowledge several limitations:  

• Dataset Specificity: We evaluated our approach 
on OpenStack Nova logs featuring specific VM 
lifecycle events and three known failure types. 
Further testing is required to ascertain 
generalizability to other OpenStack services, 
different cloud platforms, or novel anomaly 
types.  

• Parser Dependency: The framework’s 
effectiveness hinges on the quality and 
consistency of the upstream Drain parser [1], [2]. 
Inaccuracies or inconsistencies in log parsing 
could negatively impact downstream 
performance.  

• Static Evaluation: We assessed performance on 
a static holdout set. Investigating real-time, 
streaming performance and the framework’s 
adaptability to evolving log patterns remains 
future work.  

• Hyperparameter Sensitivity: The framework’s 
performance relies on careful tuning of both the 
RoBERTa fine-tuning process and the 
downstream anomaly detectors (IF and 
OCSVM). Optimal parameters might vary across 
different log sources or distributions of 
anomalies.  

• Model Transparency and Robustness: This study 
does not address the “black box” nature of the 
model, which is a barrier to operational trust and 
forensic defensibility. Future work must integrate 
Explainable AI (XAI) methods, such as feature 
attribution [13], to provide interpretability. 
Furthermore, the model’s resilience against a 
malicious adversary was not evaluated. The 
system must also be tested against adversarial 
attacks, such as data poisoning, which are a 
unique threat to ML-based security systems [14]. 
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5. CONCLUSION  

In this paper, we presented and validated an 
effective unsupervised anomaly detection framework 
for OpenStack logs, leveraging fine-tuned RoBERTa-
base model embeddings. Our methodology, which 
involves parsing logs into event sequences, adapting 
RoBERTa via Masked Language Modeling (MLM) and 
Parameter-Efficient Fine-Tuning (PEFT) with LoRA, 
and then applying these contextual embeddings to 
unsupervised classifiers like Isolation Forest and One-
Class SVM, achieves high detection accuracy.  

On a holdout test set, our framework demonstrated 
excellent performance: Isolation Forest yielded an 
Anomaly F1-score of 0.9744 and a ROC-AUC of 
0.9952, while One-Class SVM achieved an F1-score of 
0.9467 and a ROC-AUC of 0.9569. These results 
confirm our approach’s ability to effectively distinguish 
normal operations from failures within OpenStack logs. 
Notably, these F1-scores substantially surpass those of 
traditional methods like PCA (which can score as low 
as 0.37 on some OpenStack datasets [4]) and are 
highly competitive with state-of-the-art transformer-
based approaches such as LogBERT [5] on standard 
benchmarks.  

The central contribution of this work is the 
demonstration that fine-tuned, domain-adapted 
contextual embeddings provide a highly effective and, 
crucially, robust representation for anomaly detection. 
This was validated by our framework’s consistent high 
performance on a filtered dataset where simpler 
sequential models, such as an LSTM Autoencoder, 
failed significantly. This finding confirms that our 
approach learns true contextual patterns rather than 
relying on simplistic event indicators, offering a 
promising direction for developing more resilient and 
semantically aware monitoring solutions for complex 
infrastructures. 

Future research will focus on evaluating our 
framework across a broader range of OpenStack 
services and anomaly types, exploring alternative 
transformer architectures and PEFT methods, and 
investigating the impact of different parsing strategies. 
Beyond technical improvements, our framework offers 
significant interdisciplinary potential, particularly at the 
intersection of cybersecurity, digital forensics, and legal 
compliance. The deterministic and data-driven nature 
of transformer-based anomaly scores could serve as 
machine-generated auditable evidence in legal 
proceedings, strengthening incident response 

documentation, and regulatory compliance efforts. 
Furthermore, integration with forensic data frameworks 
would enable seamless incorporation of our anomaly 
detection outputs into comprehensive incident 
investigation workflows, bridging the gap between 
automated detection and legally defensible forensic 
reporting. 
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