Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, 1, 9-20 9
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Abstract: As cloud computing infrastructures increasingly depend on reliable operation, proactively detecting anomalies
in system logs becomes indispensable. Conventional log analysis techniques often produce high false-alarm rates and
exhibit limited semantic understanding. To address these limitations, we developed an unsupervised anomaly detection
framework that leverages fine-tuned RoBERTa-base model embeddings to capture contextual patterns within
OpenStack log event sequences. We apply a crucial filtering step to remove high-frequency, non-discriminatory events,
ensuring our models learn from nuanced contextual signals rather than simple indicators. From these refined sequences,
we construct a custom vocabulary and fine-tune RoBERTa with Parameter-Efficient Fine-Tuning (PEFT) using LoRA.
These contextualized embeddings inform unsupervised classifiers, including Isolation Forest and One-Class SVM,
trained solely on normal data. Our approach demonstrates excellent and robust performance on a holdout test set
(Anomaly F1-Score up to 0.97), significantly outperforming traditional LSTM-based baselines on the same task. These
results demonstrate that contextualized transformer embeddings provide a powerful and resilient foundation for log-
based anomaly detection, reducing false alarms and improving detection accuracy in complex cloud environments.
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1. INTRODUCTION

As cloud computing infrastructures continue to scale
and support critical applications, real-time monitoring of
system health through log analysis has become
essential. System logs offer rich operational data, yet
traditional log-mining solutions, often relying on
template-based parsing or statistical methods like PCA,
frequently struggle with high false-alarm rates and a
lack of semantic depth needed to detect nuanced
deviations in event sequences [1-4].

Recent advances in deep learning, particularly
transformer-based language models, present a
significant opportunity to overcome these challenges.
For instance, LogBERT demonstrated that fine-tuned
BERT embeddings can capture  contextual
dependencies within log messages, outperforming
classical baselines on public datasets [5]. Furthermore,
Parameter Efficient Fine-Tuning (PEFT) techniques
enable the application of large language models to log
mining with reduced computational overhead while
achieving competitive performance [6].

Despite these advancements, many studies focus
on benchmark datasets like HDFS and BGL, leaving
cloud-native platforms such as OpenStack, a widely
adopted, complex, and mission-critical infrastructure,
relatively underexplored by these sophisticated
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semantic approaches. While some work on OpenStack
logs has employed methods like Robust PCA [4] to
achieve respectable detection, such statistical
approaches often do not fully leverage the sequential
and semantic richness inherent in log instance
streams. This gap is compounded by the known
variability in log template extraction quality across
different sources [1-3], underscoring the critical need
for methods that integrate robust log parsing with deep
contextual modeling, especially for multifaceted
systems like OpenStack.

At the same time, there remains a broader gap in
how these methods contribute to the security and
forensic value of logs. In operational environments,
especially within Security Operations Centers (SOCs),
excessive false alarms increase analyst fatigue and
extend mean time to respond. Moreover, limited
contextual understanding of log sequences weakens
the ability to reconstruct incident timelines or trace
abnormal behaviors in forensic analysis. Bridging this
methodological gap is therefore crucial not only for
improving detection accuracy but also for strengthening
cyber defense and post incident response capabilities
in cloud infrastructures.

This paper addresses these challenges by
presenting an unsupervised anomaly detection
framework specifically tailored for OpenStack system
logs (illustrated in Figure 1). We begin by applying the
Drain algorithm to parse raw logs into instance level
event sequences. From a dataset of 5,452 such
sequences, we then construct a domain-specific

E-ISSN: 3070-5789/2025



10 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 Rajkarnikar et al.

RoBERTa
Fine-Tuning

Raw
Logs

Anomaly

Preprocessing Detectors

Embeddings

AN

Figure 1: Overview of the proposed unsupervised anomaly detection framework for OpenStack logs using fine-tuned RoBERTa
embeddings. This diagram illustrates the end-to-end workflow: raw OpenStack logs are first parsed with the Drain algorithm to
extract structured event templates. After filtering high-frequency events, sequences of EventlDs are generated per VM instance.
These sequences are used to build a custom vocabulary and fine-tune a RoBERTa-base model with Parameter-Efficient Fine-
Tuning (LoRA). The resulting contextual embeddings are then used to train Isolation Forest and One-Class SVM detectors,
which classify unseen log sequences as normal or anomalous.

vocabulary and fine-tune a RoBERTa-base model
using PEFT (LoRA) with Optuna-driven
hyperparameter search. This process vyields
contextualized 768-dimensional embeddings. Finally,
we feed these embeddings into Isolation Forest and
One-Class SVM classifiers, trained exclusively on
normal data. Our approach significantly reduces false
alarms and improves detection accuracy across
diverse OpenStack failure scenarios, outperforming
traditional template- and PCA-based baselines and
demonstrating the power of contextualized embeddings
for this domain.

2. TRAINING METHODS

This section details the comprehensive
methodology we employed in our unsupervised
anomaly  detection  framework. @ Our  process
encompasses dataset preparation, log preprocessing,
RoBERTa-base model  fine-tuning, contextual
embedding extraction, and the training of anomaly
detection classifiers.

A. Dataset Preparation

The dataset consists of instance-level event
sequences parsed from raw OpenStack logs. We begin
by loading the structured CSV outputs produced by the
Drain parser (see Section 1I-B). This dataset includes
four distinct log families:

. Normal VM creation (openstack nova normal
vm create): 4,944 instances ¢« DHCP off
(openstack nova dhcp off): 199 instances

. Immediate VM destroy (openstack vm destroy
immediately after create): 196 instances

. Undefine VM after create (openstack nova un
define vm after create): 113 instances

This yields a total of 5,452 parsed log instances,
each represented as an ordered sequence of event

templates (or EventlDs). The distribution of these
instances is shown in Figure 2.

Before partitioning the data, we perform a crucial
filtering step to enhance our evaluation. We first
analyzed the event frequency across all log types and
identified two high-frequency event IDs that acted as
overly strong, simplistic discriminators between normal
and abnormal sequences. To ensure our models learn
from broader contextual patterns rather than relying on
these “telltale” events, we remove them from all
sequences. This step creates a more challenging and
realistic detection scenario, testing the model’s ability
to understand nuanced event relationships.

We label each log instance as “normal” or
“anomaly” based on its source family. Subsequently,
we perform an 85/15 stratified split of the entire
dataset, carefully preserving the original class
proportions. This split creates a development set of
4,634 instances (4,202 normal, 432 anomaly) and a
holdout test set of 818 instances (742 normal, 76
anomaly). We use stratified sampling on the instance
labels to ensure a balanced representation of each
failure scenario in both subsets.

Finally, we serialize the development and test splits
into NumPy archives (.npz files). These archives store
the event sequence arrays and their corresponding
label vectors, facilitating efficient data loading for
subsequent model fine-tuning and evaluation.

B. Preprocessing

Our preprocessing pipeline (Figure 3) transforms
raw OpenStack log files into structured event
sequences suitable for transformer modeling. First, we
ingest the raw logs. We apply a regular expression that
matches the start of each log entry (timestamp + level).
Any subsequent lines not matching this pattern are
concatenated to their predecessor with a literal “\n”
separator; this step preserves multi-line traces and
wrapped messages as single logical events.
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Figure 2: Distribution of log instances across normal and anomaly categories in the full OpenStack dataset. The bar chart
shows the number of parsed VM lifecycle instances belonging to each event family: 4,944 normal VM creations and three
anomaly types: 199 DHCP-off, 196 immediate-destroy, and 113 undefine-after-create cases, yielding a total of 5,452 instances

used for model development and testing.

Next, we parse these consolidated logs using the
Drain algorithm. Drain clusters raw messages into
templates (e.g., “VM instance <ID> started”) and emits
structured CSV files. For each event, these files
contain fields such as Eventld (a unique string identifier
assigned to each template, e.g., “E12345”) and
ParameterList (containing extracted variables like
instance IDs).

To reduce noise and improve template
generalization, we replace variable content, such as
numeric values, UUIDs, IP addresses, and other free-
form parameters, with generic placeholders like
<NUM> and <ID> via regex before parsing with Drain.

Following parsing, we construct per-instance
sequences. We group together all events sharing the
same instance value (extracted from the ParameterList
column) and order them by timestamp. This process
results in ordered lists of string Eventlds for each VM
lifecycle. At the end of this stage, each log instance is
represented as a sequence of string-based Eventld
tokens (representing log templates), which serve as
input for the subsequent vocabulary construction and
model fine-tuning.

Drain Parse

( Raw Log H Multi-line Merge }—-
L emplate| | Params

C. Vocabulary Construction

We construct a custom vocabulary exclusively from
the development set (4,634 instances) to prevent data
leakage from the holdout test set. First, we aggregate
all event sequences within the development set. Then,
we identify all unique string Eventld tokens (e.g., “E5”,
“E23”) present across these sequences. The
vocabulary comprises these unique Eventlds plus five
standard special tokens: [PAD], [UNK], [CLS], [SEP],
and [MASK]. We assign a unique integer index to each
unique Eventld string and each special token. This
process yields a final vocabulary of 369 tokens. We
serialize the resulting vocabulary dictionary, which
maps string tokens to integer indices, to a JSON file
(event_vocab_dev.json) for use during model fine-
tuning and embedding extraction.

D. Masked Language Model Fine-Tuning

To adapt the transformer to OpenStack event-
sequence semantics, we fine-tune a pretrained
RoBERTa-base model with a Masked Language
Modeling (MLM) objective, as illustrated conceptually in
Figure 4. First, we resize the model’s vocabulary and

Event/D Assignment H Instance Grouping H Final Sequence

Figure 3: Log preprocessing pipeline transforming raw OpenStack logs into structured EventlD sequences. The pipeline
consolidates multi-line messages, applies the Drain log parser to produce structured templates, replaces variable content (e.g.,
UUIDs, IP addresses) with placeholders, and groups events by VM instance. The ordered sequences of EventlDs produced at
the end of this process form the tokenized input for vocabulary construction and RoBERTa fine-tuning.
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embedding layer to accommodate our custom 369
token event-ID vocabulary.
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Figure 4: Masked Language Model (MLM) fine-tuning
objective applied to the RoBERTa-base model for EventlD
sequences. During training, approximately 15 % of EventIDs
in each sequence are randomly masked, and the model
learns to predict them based on surrounding context. This
self-supervised task enables ROBERTa to capture sequential
and semantic relationships between log events, producing
domain-adapted contextual embeddings for anomaly
detection.

The development set sequences which were
tokenized into integer ID sequences by a custom
tokenizer using the vocabulary built in the previous
step, are padded or truncated to a fixed length of 64.
These sequences are stratified into a 90% training
subset (4,170 instances) and a 10% validation subset
(464 instances). We employ PEFT via Low-Rank
Adaptation (LoRA) [6] with parameters r=8,
lora_alpha=32, and lora_dropout=0.1 applied to the
query, key, and value projection layers of the
transformer.

During training, we mask 15% of tokens and
optimize the standard MLM cross-entropy over masked
positions.

We tuned LoRA/optimizer settings with a brief
Optuna search (5 trials, 5 epochs per trial), selecting
the checkpoint with lowest validation loss. The best run
used a learning rate of 6.17x10™, batch size 32, weight
decay = 0.0237, and warmup ratio = 0.1739. We then
trained up to 10 epochs with early stopping (patience 3)
and kept the best checkpoint (validation loss 0.3375). A
concise summary is in Table 1.

Table 1: MLM Fine-Tuning Summary

Item Value

Search budget 5 trials, 5 epochs/trial

Mask rate 15%
Best LR 6.17x10™
Batch size 32
Weight decay ~0.0237

Warmup ratio ~0.1739

Early stopping Patience 3 (max 10 epochs)

Best val. loss 0.3375

E. Embedding Extraction

After fine-tuning the Masked Language Model, we
extract fixed-dimensional vector representations
(embeddings) for each event sequence in both the
development and holdout test sets. This process
involves using the fine-tuned RoBERTa-base model
obtained from the previous stage. The saved LoRA
adapters are loaded and merged into the base model
for efficient inference.

For each sequence (represented as a list of string
Eventlds), we first apply a tokenization process specific
to this stage using the custom vocabulary constructed
previously. This involves prepending a [CLS] token and
appending a [SEP] token to the sequence of integer
IDs corresponding to the Eventlds. We then pad or
truncate the resulting sequence to a fixed length of 64
tokens and generate an attention mask. We feed these
processed sequences into the encoder part
(specifically, the roberta attribute) of the fine-tuned
RobertaForMaskedLM model, thereby bypassing the
MLM prediction head. We use CLS pooling on the final
encoder layer to obtain a 768-dimensional sequence
embedding per instance.

These 768-dimensional embeddings are generated
for all instances in both the development and holdout
test sets. We then save the resulting embedding
arrays, along with their corresponding instance
identifiers and labels, to separate NumPy archives
(.-npz files) for use in subsequent training and
evaluation of anomaly detection classifiers.

F. Anomaly Detector Training

With the 768-dimensional embeddings generated
for each instance, we train two unsupervised anomaly
detection models using the development set: Isolation
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Table 2: Detector Tuning Summary (Concise)

Model Search Selected Config
IF Optuna (50 trials) n estimators = 400, max samples = 0.799, contam. = 0.0107, max features =~ 0.681, bootstrap = False
OCSVM Optuna (75 trials) Linear kernel, v = 0.0575

Forest (IF) and One-Class Support Vector Machine
(OCSVM). Crucially, both detectors are trained
exclusively on the embeddings corresponding to
normal instances (4,202 samples) from the
development set, making the approach unsupervised.
We tuned Isolation Forest (IF) and One-Class SVM
(OCSVM) with Optuna, training on development-set
normals only and selecting configurations that
maximized anomaly F1 on the development split. The
selected OCSVM used a linear kernel with v = 0.0575;
IF used n_estimators = 400, max_samples = 0.799,
contamination = 0.0107, max_features = 0.681, and no
bootstrap. The final models were refit on all normal
embeddings from the development set. Table 2
summarizes the search succinctly.

A key difference between the two detectors lies in
how they set the decision boundary for anomalies:

. Isolation Forest (IF): After training, we compute
decision_function scores on the development set
(normal + anomaly) and choose the threshold
that maximizes anomaly F1; this fixed threshold
is then applied to the test set.

. One-Class SVM (OCSVM): Uses its intrinsic
boundary (controlled by v) and classifies via
predict (+1 normal,-1 anomaly).

Finally, the trained Isolation Forest model and its
determined optimal threshold, along with the trained
One-Class SVM model, are saved (.joblib files) for
subsequent evaluation of the embeddings of the
unseen holdout test set.

3. EVALUATION METHODOLOGY

We evaluate the final performance of our trained
anomaly detection models on the unseen holdout test
set. This set, comprising 818 instances (742 normal, 76
anomaly), represents approximately 15% of the total
dataset. We preserved its original class distribution via
stratified sampling and ensured it was not used during
any phase of model training or hyperparameter tuning.

For evaluation, we use the precomputed 768-
dimensional embeddings from the holdout test set

instances as input. We load the saved, optimally tuned
Isolation Forest (IF) and One Class SVM (OCSVM)
models.

i For Isolation Forest, anomaly scores are
obtained using the model’'s decision_function. An
instance is classified as anomalous if its score is
below the optimal threshold determined
previously during the post-hoc tuning step on the
development set (threshold value =0.0000).

. For One-Class SVM, classification is performed
directly using the model’s prediction method. The
output (-1 for anomaly, +1 for normal) is mapped
to binary labels (1 for anomaly, 0 for normal).

We assess model performance using standard
metrics suitable for potentially imbalanced anomaly
detection tasks. Our primary focus is on Precision,
Recall, and F1-Score for the anomaly class (label=1),
defined as:

TP

precision = m

TP

=
TeCAt = TIP Y FN

2XprecisionXrecall

F1—Score = —
precision + recall

Where TP, FP, and FN are True Positives, False
Positives, and False Negatives for the anomaly class.

Additionally, we compute the Area Under the
Receiver Operating Characteristic Curve (ROC-AUC),
using the negated anomaly scores from each model’s
decision_function as input for ranking instances. A full
Classification Report (including accuracy and metrics
for both classes) and a Confusion Matrix (True
Negatives, False Positives, False Negatives, True
Positives) are also generated. The evaluation metrics
are calculated using the scikit-learn library.

To further validate the robustness of our models’
performance on the holdout set, we conducted a 10-
fold stratified cross-validation. For this procedure, the
holdout set was partitioned into 10 folds, preserving the
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class distribution in each. We then evaluated our
single, optimally tuned IF and OCSVM models on each
fold sequentially. This process allows us to assess the
stability and consistency of the models’ performance
across different subsets of the unseen data, ensuring
that our reported metrics are not the result of a
favorable, single partition.

4. RESULTS AND DISCUSSION

This section presents the performance of our
unsupervised anomaly detection framework on the
holdout test set. We first detail the quantitative results
achieved by our RoBERTa embedding-based approach
with Isolation Forest and One Class SVM. We then
discuss the effectiveness of contextual embeddings,
compare our work with related studies, analyze the
performance of the two anomaly detectors, and
acknowledge the limitations of our study.

A. Quantitative Results

We assessed the performance of our fine-tuned
RoBERTa embedding approach, combined with
optimized Isolation Forest (IF) and One-Class SVM
(OCSVM) anomaly detection classifiers, on the unseen
holdout test set (818 instances: 742 normal, 76
anomaly). Tables 3 and 4 present detailed
classification reports, including Precision, Recall, F1-
Score, and Support for both normal (0) and anomaly
(1) classes for IF and OCSVM, respectively. For a
compact, side-by-side summary that includes
baselines, see Table 5.

Both models achieve excellent overall accuracy (>
0.99). For the crucial anomaly class, the Isolation
Forest model yields an F1-score of 0.9744, driven by a
perfect recall of 1.0000. The One-Class SVM also
performs very well, achieving an F1-score of 0.9467.
The ROC-AUC scores further confirm strong
discrimination ability, with Isolation Forest achieving
0.9952 and One-Class SVM achieving 0.9569. The
separability of instances is illustrated in Figure 5. These
results demonstrate that our contextual RoBERTa
embeddings enable effective discrimination even when
obvious indicator events are removed.

To confirm the stability of these results, we
performed a 10-fold cross-validation on the holdout set.
The lIsolation Forest model demonstrated exceptional
consistency, achieving an average Anomaly F1-Score
of 0.9749 + 0.0308 and an average ROC-AUC of
0.9950 + 0.0062. The One-Class SVM was similarly
stable, with an average Anomaly F1-Score of 0.9442 +
0.0757 and an average ROC-AUC of 0.9571 + 0.0665.
The low standard deviation across folds for both
models validates that their high performance is robust
and not an artifact of a specific data partition.

B. Discussion: Effectiveness of Contextual
Embeddings

The quantitative results presented in Section IV-A
strongly validate the use of fine-tuned RoBERTa
embeddings for representing OpenStack log event
sequences in anomaly detection. This performance
represents a substantial improvement over traditional
log analysis techniques like PCA, which often struggle

Table 3: Classification Report for ROBERTa + Isolation Forest on Hold-Out Test Set

Class Precision Recall F1-Score Support

Normal (0) 0.9986 0.9946 0.9973 742
Anomaly (1) 0.9500 1.0000 0.9744 76
Accuracy 0.9951 818
Macro Avg 0.9750 0.9973 0.9861 818
Weighted Avg 0.9953 0.9951 0.9952 818
Table 4: Classification Report for ROBERTa + One-Class SVM on Hold-Out Test Set

Class Precision Recall F1-Score Support
Normal (0) 0.9933 0.9959 0.9946 742
Anomaly (1) 0.9595 0.9342 0.9467 76
Accuracy 0.9902 818
Macro Avg 0.9764 0.9651 0.9705 818
Weighted Avg 0.9901 0.9902 0.9901 818
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with system logs and yield lower F1-scores, whereas
our approach delivered excellent F1-scores of 0.9744
(Isolation Forest) and a robust 0.9467 (One-Class
SVM) on the unseen holdout data.

The key advantage of our approach stems from the
ability of the fine-tuned transformer embeddings to
capture rich semantic and sequential context. Unlike
methods that treat logs as isolated events or rely solely
on statistical distributions, the RoBERTa model,
adapted via Masked Language Modeling on sequences
of EventlDs, learns the typical patterns and
relationships between events within an instance’s
lifecycle. These 768-dimensional embeddings encode
this contextual understanding, allowing the downstream
anomaly detectors (IF and OCSVM) to effectively
model the manifold of normal behavior. Anomalies,
which often manifest as unexpected events, incorrect
event ordering, or missing events within a sequence,
result in embeddings that lie further from this normal
manifold, enabling their successful identification.

Furthermore, the domain adaptation achieved by
fine-tuning RoBERTa specifically on the OpenStack
EventlD vocabulary likely contributes to this success,
tailoring the representations to the specific operational
language of this cloud platform. The high precision and
recall observed for both detectors (Tables 3 and 4)
suggest that these contextual embeddings provide a
robust feature space that minimizes the false alarms
and limited semantic understanding often associated
with conventional methods. Therefore, the results
strongly support the use of fine-tuned transformer
embeddings as a powerful foundation for high-fidelity,
unsupervised anomaly detection in complex system
logs, such as those from OpenStack.

C. Comparison with Baseline Models

To rigorously evaluate the effectiveness and
robustness of our contextual ROBERTa embeddings,
we established a strong baseline using a traditional
LSTM Autoencoder, a common method for sequential

on the normal log sequences from the development set
to learn to reconstruct them. The encoder part of this
trained model was then used to generate 128-
dimensional embeddings for all instances in both the
development and holdout sets. The same Isolation
Forest and One-Class SVM classifiers were then tuned
and tested on these LSTM-based embeddings.

The performance of these baselines on the filtered
holdout test set reveals the significant advantage of our
transformer-based approach (Table 5).

The LSTM-based models struggle on this dataset,
with the lIsolation Forest baseline achieving an F1-
score of only 0.7956 and the OCSVM baseline
collapsing to 0.5139. This indicates that while LSTMs
can learn basic sequential patterns, they are not
sufficient to capture the deep contextual information
required when simplistic “telltale” event indicators are
absent. In contrast, our RoBERTa-based models
maintain state-of-the art performance, demonstrating
their ability to learn from the entire sequence context.
This  directly validates that the contextual
understanding provided by the fine-tuned transformer is
superior and more resilient than the sequential pattern
recognition of LSTMs for this task.

D. Comparison with Related Work

Our framework’s strong performance on the
OpenStack holdout set (F1 > 0.94, Tables 3, 4)
positions it favorably compared to related approaches
in log-based anomaly detection, as summarized in
Figure 6.

LogBERT [5], which pioneered using BERT for this
task via Masked Log Key Prediction and other self-
supervised objectives, reported F1-scores of 0.823 on
HDFS, 0.908 on BGL, and 0.966 on the Thunderbird
dataset using their combined training tasks. While
direct comparison is limited due to dataset differences,
our achieved F1-scores (0.9744 for IF, 0.9467 for
OCSVM) are highly competitive and even exceed

anomaly detection. We trained an LSTM Autoencoder LogBERT's  performance on some  standard
Table 5: Performance Comparison with LSTM Autoencoder Baselines on the Filtered Holdout Set.
Model Anomaly F1-Score ROC-AUC
RoBERTa + IF 0.9744 0.9952
RoBERTa + OCSVM 0.9467 0.9569
LSTM + IF (Baseline) 0.7956 0.9696
LSTM + OCSVM (Baseline) 0.5139 0.7514
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Figure 5: Anomaly-score distributions for normal (blue) and anomalous (orange) instances on the hold-out test set. Subfigure
(a) shows scores from the lIsolation Forest model, and (b) from the One-Class SVM. Lower scores correspond to higher
anomaly likelihood, illustrating clear separability between normal and abnormal log sequences.

benchmarks. This suggests that our approach of fine-
tuning RoBERTa with PEFT (LoRA) specifically on
sequences of abstract Eventlds is highly effective for
capturing anomalous patterns within the structured
sequences derived from OpenStack logs.

When comparing our method to statistical
techniques applied specifically to OpenStack logs,
Kalaki et al. [4] utilized an improved Robust PCA
(RPCA) approach on a dataset they generated. They
reported an F1-score of 0.93 for their PRPCACS
method (see Figure 4 in [4]). Although this represents a
strong result for an RPCA-based technique, our
framework achieved even higher F1-scores on our
dataset. This difference further suggests that modeling
sequential and contextual information via transformer

embeddings offers a more powerful approach for
discriminating anomalies in OpenStack event
sequences than statistical matrix decomposition
methods like RPCA. Despite their improvements, such
statistical methods may not fully capture the nuanced,
context-dependent patterns that our approach detects.

Our adoption of PEFT (LoRA) aligns with recent
research focusing on efficient log anomaly detection,
such as the work by Lim et al. [6], who explored various
PEFT techniques. Our results confirm that applying
LoRA to a RoBERTa-base model, specifically adapted
via MLM fine-tuning on EventID sequences, effectively
achieves state-of-the-art performance for this
OpenStack task.
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Figure 6: Comparison of anomaly F1-scores between the proposed RoBERTa-based models and related methods. The bar
chart compares RoBERTa + Isolation Forest and RoBERTa + One-Class SVM against LSTM Autoencoder baselines and prior
studies such as LogBERT [5]. The results highlight the superior performance of the fine-tuned transformer embeddings on

OpenStack logs.

The success of our method inherently depends on
the quality of the upstream log parsing provided by the
Drain algorithm. As well-documented [1, 2], accurate
and effective parsing is a critical prerequisite, and its
challenges underscore this dependency. By focusing
on OpenStack data, our work contributes to the
evaluation of anomaly detection techniques on logs
from modern, complex cloud systems, thereby
addressing potential limitations of relying solely on
older benchmark datasets [3].

In conclusion, our approach leverages domain-
adapted transformer embeddings via PEFT on parsed
event sequences, demonstrating performance that is
highly competitive with or exceeds state-of-the-art
methods on various benchmarks, and appears
significantly more effective than statistical techniques
like RPCA when applied to OpenStack log sequences.

E. Analysis of Anomaly Detectors (IF vs. OCSVM)

Both Isolation Forest (IF) and One-Class SVM
(OCSVM), when applied to the fine-tuned RoBERTa
embeddings, proved highly effective, though they
exhibited slightly different performance profiles (Tables
3,4).

Isolation Forest achieved a marginally superior F1-
score (0.9744 vs. 0.9467) and ROC-AUC (0.9952 vs.
0.9569), driven by a perfect recall of 1.0000. This
suggests its ensemble-based isolation mechanism was

slightly better at capturing the overall distribution
variance between normal and anomalous embeddings,
resulting in zero false negatives.

Conversely, One-Class SVM achieved a slightly
higher precision (0.9595 vs. 0.9500), resulting in fewer
false positives (3 vs. 4). The linear kernel identified
during hyperparameter optimization learned a tight
decision boundary around the dense cluster of normal
embeddings, excelling at minimizing false alarms but
consequently misclassifying a few more anomalies.

The difference in thresholding strategy (post-hoc
optimal F1 for IF vs. intrinsic OCSVM boundary) also
contributes to this performance trade-off. The ROC-
AUC, being threshold independent, confirms that IF
has a stronger overall ranking ability on this dataset.

Ultimately, the choice between them could depend
on operational tolerance for false positives versus false
negatives. However, the strong performance of both
underscores the quality of the RoBERTa embeddings
in creating a highly separable feature space for
unsupervised anomaly detection.

F. Implications for Cybersecurity Operations and
Forensics

The high-performance metrics achieved by our
framework have direct and practical applications in
addressing critical challenges within real-world
cybersecurity operations. The modern Security
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Operations Center (SOC) is widely reported to be in a
state of crisis, suffering from overwhelming alert
volumes and high false-positive rates that lead to
analyst burnout and missed threats [7], [8]. Our
approach, particularly the Isolation Forest model
achieving an Anomaly F1-score of 0.9744 with high
precision, can serve as a powerful automated triage
engine. By autonomously filtering many benign log
sequences, it would dramatically reduce the low fidelity
alert queue, directly combating the alert fatigue
epidemic. This automation frees human analysts from
repetitive, low-level tasks, enabling a strategic shift
from a reactive “firefighting” posture to proactive threat
hunting, where expert time is dedicated to investigating
the high-confidence anomalies surfaced by the model

[9].

Furthermore, in the context of post-breach Digital
Forensics and Incident Response (DFIR), our method
functions as a forensic accelerator. Traditional forensic
analysis requires investigators to manually sift through
massive volumes of historical log data to reconstruct an
attack timeline, a process that is slow and prone to
missing subtle indicators [10]. The superior contextual
understanding of our RoBERTa-based model, which
proved far more resilient than an LSTM, is particularly
well-suited for uncovering the “low and slow” attack
patterns characteristic of advanced persistent threats.
These sophisticated attacks often consist of a
sequence of seemingly benign events spread over long
periods, which evade signature-based tools and simple
sequential models [11]. By presenting investigators
with a pre-computed and correlated set of all
anomalous sequences, our framework provides a data-
driven starting point, enabling faster root cause
analysis and a more complete and accurate
reconstruction of the entire attack chain.

G. Ethical and Legal Considerations

As we note in our conclusion, a key interdisciplinary
potential for this framework lies in its application to
digital forensics and “legally defensible forensic
reporting.” However, a significant ethical and legal
barrier for any “black box” model, including our fine-
tuned RoBERTa, is its inherent opacity. For an
automated alert to be truly “legally defensible,” the logic
behind the judgment must be transparent, auditable,
and explainable to a human investigator or a court.

This creates a critical need for Explainable Al (XAl)
to bridge this gap. A crucial area for future work is
integrating methods to interpret these complex models.

Techniques such as post-hoc rule extraction, which can
generate human-readable rules for unsupervised
models [12], or feature attribution methods that
evaluate the contribution of each log event to an alert
[13], are essential. Applying these XAl techniques
would transform a statistical anomaly score into an
actionable, defensible finding, thereby satisfying the
legal and ethical demands for transparency.

H. Limitations

While our proposed framework demonstrates
promising results, we acknowledge several limitations:

. Dataset Specificity: We evaluated our approach
on OpenStack Nova logs featuring specific VM
lifecycle events and three known failure types.
Further testing is required to ascertain
generalizability to other OpenStack services,
different cloud platforms, or novel anomaly

types.
. Parser Dependency: The framework’s
effectiveness hinges on the quality and

consistency of the upstream Drain parser [1], [2].
Inaccuracies or inconsistencies in log parsing

could negatively impact downstream
performance.
. Static Evaluation: We assessed performance on

a static holdout set. Investigating real-time,
streaming performance and the framework’s
adaptability to evolving log patterns remains
future work.

. Hyperparameter Sensitivity: The framework’s
performance relies on careful tuning of both the
RoBERTa fine-tuning process and the
downstream anomaly detectors (IF and
OCSVM). Optimal parameters might vary across
different log sources or distributions of
anomalies.

. Model Transparency and Robustness: This study
does not address the “black box” nature of the
model, which is a barrier to operational trust and
forensic defensibility. Future work must integrate
Explainable Al (XAl) methods, such as feature
attribution [13], to provide interpretability.
Furthermore, the model’s resilience against a
malicious adversary was not evaluated. The
system must also be tested against adversarial
attacks, such as data poisoning, which are a
unique threat to ML-based security systems [14].
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5. CONCLUSION

In this paper, we presented and validated an
effective unsupervised anomaly detection framework
for OpenStack logs, leveraging fine-tuned RoBERTa-
base model embeddings. Our methodology, which
involves parsing logs into event sequences, adapting
RoBERTa via Masked Language Modeling (MLM) and
Parameter-Efficient Fine-Tuning (PEFT) with LoRA,
and then applying these contextual embeddings to
unsupervised classifiers like Isolation Forest and One-
Class SVM, achieves high detection accuracy.

On a holdout test set, our framework demonstrated
excellent performance: lIsolation Forest yielded an
Anomaly F1-score of 0.9744 and a ROC-AUC of
0.9952, while One-Class SVM achieved an F1-score of
0.9467 and a ROC-AUC of 0.9569. These results
confirm our approach’s ability to effectively distinguish
normal operations from failures within OpenStack logs.
Notably, these F1-scores substantially surpass those of
traditional methods like PCA (which can score as low
as 0.37 on some OpenStack datasets [4]) and are
highly competitive with state-of-the-art transformer-
based approaches such as LogBERT [5] on standard
benchmarks.

The central contribution of this work is the
demonstration that fine-tuned, domain-adapted
contextual embeddings provide a highly effective and,
crucially, robust representation for anomaly detection.
This was validated by our framework’s consistent high
performance on a filtered dataset where simpler
sequential models, such as an LSTM Autoencoder,
failed significantly. This finding confirms that our
approach learns true contextual patterns rather than
relying on simplistic event indicators, offering a
promising direction for developing more resilient and
semantically aware monitoring solutions for complex
infrastructures.

Future research will focus on evaluating our
framework across a broader range of OpenStack
services and anomaly types, exploring alternative
transformer architectures and PEFT methods, and
investigating the impact of different parsing strategies.
Beyond technical improvements, our framework offers
significant interdisciplinary potential, particularly at the
intersection of cybersecurity, digital forensics, and legal
compliance. The deterministic and data-driven nature
of transformer-based anomaly scores could serve as
machine-generated auditable evidence in legal
proceedings, strengthening incident response

documentation, and regulatory compliance efforts.
Furthermore, integration with forensic data frameworks
would enable seamless incorporation of our anomaly
detection outputs into comprehensive incident
investigation workflows, bridging the gap between
automated detection and legally defensible forensic
reporting.
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