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Abstract: As databases become increasingly central to modern information systems, protecting them from unauthorized 
access and malicious transactions has become a critical research priority. Traditional signature-based intrusion detection 
systems (IDS) are often ineffective in discovering novel or stealthy attacks due to their reliance on predefined patterns. To 
address this limitation, this study proposes an anomaly-based database intrusion detection framework that integrates 
PrefixSpan sequential pattern mining with adaptive binary feature engineering specifically designed for database 
transaction semantics. The novel contribution lies in the systematic integration of optimal pattern-mining parameters 
(support ratio = 0.05, pattern length [2–4]) with an OCSVM-RBF kernel transformation that effectively handles 
discrete binary feature spaces, addressing the fundamental challenge of learning solely from normal data in transactional 
contexts. The framework demonstrates robustness under realistic noise conditions (20% transaction-level corruption) and 
provides a comprehensive algorithm–feature-space compatibility analysis, revealing why kernel methods succeed while 
covariance-based approaches fail on sparse binary patterns. Experimental results show that OCSVM with the RBF 
kernel achieves a 98% F1-score and 95.15% AUPRC, outperforming Isolation Forest, Local Outlier Factor, Elliptic 
Envelope, and Probabilistic Neural Network by significant margins. These findings establish generalizable principles for 
sequential-pattern-based anomaly detection that extend beyond database security to any domain requiring discrete, 
sparse, high-dimensional feature representations. 

Keywords: Database Management System, Intrusion Detection System, Machine Learning. 

I. INTRODUCTION 

With the rapid growth of interconnected systems 
and data-driven applications, databases have become 
one of the most critical assets in modern organizations. 
However, their increasing complexity and exposure 
have made them prime targets for malicious activities 
[1]. Conventional signature-based Intrusion Detection 
Systems (IDS) struggle to recognize new or complex 
attacks because they depend on predefined signatures 
of previously identified threats. This limitation has 
driven the advancement of anomaly-based intrusion 
detection systems, which detect unusual deviations 
from established normal behavior, enabling them to 
identify previously unseen or novel attacks more 
effectively [2]. 

Anomaly detection within databases poses unique 
challenges compared to network-based IDS, as 
attacks often occur through legitimate user 
credentials or subtle manipulation of transaction 
behavior. Unlike network intrusions, which are 
frequently identified by packet-level signatures or traffic 
irregularities, database attacks typically exploit 
authorized access pathways to perform unauthorized 
data alterations, privilege escalations, or inference 
attacks [3]. Malicious operations are embedded within 
valid SQL queries or transaction sequences, making  
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them more difficult to detect. Traditional IDS models, 
which examine system calls or network packets, do not 
capture the fine-grained data dependencies, 
transaction correlations, and semantic relationships 
between activities that are critical for understanding 
database behavior [4]. Moreover, attackers may 
distribute their activities over multiple sessions known 
as inter-transaction anomalies to avoid raising 
suspicion during any single operation [5]. While the 
challenges of database security are well-recognized, 
existing machine learning approaches to database 
intrusion detection suffer from three fundamental 
limitations that render them inadequate for real-world 
deployment scenarios, particularly when operating 
under the realistic constraint of learning from normal 
data alone.  

The Labeled Data Dependency Problem: 
Current supervised learning approaches, despite 
achieving high accuracy in controlled experiments, 
face catastrophic failure when confronted with novel 
or zero-day attacks. Studies have shown that models 
trained on historical attack data often fail to generalize 
to previously unseen threats because they depend on 
labeled examples that may not be representative of 
evolving attack patterns, leading to significantly 
reduced detection performance in real-world settings 
[6, 7]. This limitation is particularly severe in 
database contexts where attack behaviors evolve 
rapidly, making historical labels obsolete, privacy 
regulations prevent sharing of attack data across 
organizations, and the cost of expert labeling is 
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prohibitively expensive. Furthermore, class imbalance 
is extreme, with anomalous transactions constituting 
only a tiny fraction of typical database workloads. 

The Sequential Pattern Blindness: Existing 
unsupervised approaches, including clustering-based 
and distance-based methods, treat database 
transactions as independent entities, fundamentally 
failing to capture the sequential nature of database 
operations that is critical for detecting sophisticated 
attacks. Keyvanpour et al. [8] proposed a density-
based clustering intrusion detection algorithm (CID) for 
database systems, highlighting the use of unsupervised 
methods for distinguishing normal vs abnormal activity 
but also under-scoring the challenges in effectively 
modeling complex sequential behavior without explicit 
temporal pattern learning. A work by Singh el al. [9] 
focused on combining clustering with sequential pattern 
mining further illustrates that purely clustering-based 
approaches are inadequate for high-fidelity intrusion 
detection and motivates sequence-aware modeling. As 
a result, attacks involving multi-step sequences that are 
benign in isolation but anomalous collectively remain 
difficult to detect with these techniques. 

The Feature Representation Inadequacy: Current 
approaches rely on hand-crafted statistical features 
(frequency counts, timing statistics, resource access 
patterns) that fail to capture the complex behavioral 
patterns inherent in database transaction sequences. 
Statistical features lose critical ordering information 
essential for detecting sequence-based attacks, 
aggregated metrics obscure subtle anomalies that 
occur within normal statistical ranges, and traditional 
feature engineering approaches cannot adapt to 
evolving attack patterns without manual intervention. 

In such contexts, modeling user-specific behavioral 
profiles and transaction-level dependencies becomes 
essential, but the convergence of these limitations 
creates a compelling case for one-class learning 
approaches that can operate effectively with normal 
data alone. Each transaction may consist of multiple 
read, write, and commit operations, and the 
relationships between these actions can reveal 
deviations from established access patterns. However, 
existing one-class learning applications to database 
security suffer from critical gaps: no existing work 
successfully integrates sequential pattern mining with 
one-class learning for database anomaly detection, 
existing approaches treat database transactions as 
isolated feature vectors ignoring transactional context 
fundamental to database security, and current 

evaluations use metrics inappropriate for imbalanced 
anomaly detection while failing to assess robustness 
under realistic operational conditions. 

Therefore, an effective database IDS must analyze 
not only the content of queries but also their temporal 
and sequential context, learning how users normally 
interact with the database over time [10]. To address 
these challenges, this study introduces a machine 
learning-based detection pipeline tailored to 
transactional behavior analysis in relational databases. 
The approach focuses on extracting frequent access 
patterns from normal transactions and encoding them 
into binary feature vectors through systematic 
sequential pattern mining. This feature engineering 
strategy enables the modeling of legitimate user 
behavior without requiring prior knowledge of attack 
signatures, directly addressing the labeled data 
dependency problem identified in existing approaches. 
Furthermore, the system is evaluated under realistic 
noise conditions to simulate partial pattern corruption or 
attribute obfuscation, testing its robustness in real-
world scenarios. 

Building on these prior works and addressing 
the identified research gaps, this research investigates 
an anomaly detection framework for database 
transactions using One-Class SVM (OCSVM) as the 
primary model, complemented by comparisons with 
Isolation Forest, Local Outlier Factor, Elliptic Envelope 
and Probabilistic Neural Network (PNN). OCSVM is 
chosen as the main model due to its strength in 
learning from only normal data while effectively 
capturing complex patterns in high-dimensional feature 
spaces, directly addressing the core limitation of 
existing ML-based DIDS approaches that fail to learn 
effectively from normal data alone while capturing the 
sequential patterns essential for detecting sophisticated 
database attacks. By applying sequential pattern 
mining for feature extraction and evaluating multiple 
models across accuracy, precision, recall, F1-score, 
and ROC-AUC, this study seeks to determine the most 
efficient and reliable approach for detecting intrusions 
within database environments while providing 
systematic hyperparameter optimization with empirical 
validation and comprehensive robustness analysis 
missing from existing research. 

The convergence of these contributions bridges the 
gap between theoretical capabilities and practical 
requirements, enabling effective database intrusion 
detection in realistic deployment scenarios where 
labeled attack data is unavailable or insufficient, thus 
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representing a fundamental advance in database 
security methodology that moves beyond the limitations 
of supervised learning and traditional unsupervised 
approaches. 

The remaining segment of this paper is structured 
as follows: we address the analysis of previous 
research work in section 2. The data set characteristics 
and working procedures are introduced in Section 3. 
Sections 4 discuss the results and performance 
comparison with other related framework. In section 5, 
we then conclude a summary. 

II. RELATED WORK 

Over the past two decades, intrusion detection has 
undergone significant evolution, transitioning from 
traditional network-based approaches to more 
sophisticated frameworks each addressing specific 
limitations of its predecessors while introducing new 
challenges that motivate our proposed approach. 

A. Traditional and Network-Based Intrusion 
Detection (NIDS) 

Early IDS implementations primarily relied on 
signature-based or rule-based detection, where 
predefined attack signatures were matched against 
incoming data streams. Although effective against 
known threats, these systems struggled to identify 
zero-day or novel attacks. For instance, classical 
systems such as Snort and Bro achieved high precision 
on known exploits but failed to generalize to new 
patterns. This limitation led to research on anomaly-
based detection, where statistical modeling and pattern 
deviation techniques were used to identify unusual 
network behavior without explicit attack signatures [1]. 
Zhang el al. [11] provide a recent survey of network 
traffic anomaly detection techniques—including 
statistical, behavioral, and hybrid models—that 
frames this evolution in the context of contemporary 
challenges. Kumar et al. [12] conducted a detailed 
review of network-based intrusion detection systems, 
outlining how classical rule-driven IDS evolved toward 
hybrid and anomaly-driven detection architectures to 
address the limitations of static signature methods. 
Their analysis highlighted that while firewalls and filters 
are effective for simple threats, NIDSs offer a more 
robust defense by monitoring traffic patterns across 
routers and switches to detect complex, distributed 
intrusions in real time. Shyu et al. [13] proposed a 
Principal Component Classifier (PCC) that treated 
intrusions as outliers in high-dimensional space using 

robust PCA. Their model captured both magnitude and 
correlation changes through major and minor 
components, achieving higher accuracy and lower false 
alarms than nearest neighbor and LOF methods on the 
KDD’99 dataset. Similarly, Mukkamala et al. [14] 
demonstrated that Support Vector Machines (SVMs) 
and Neural Networks (NNs) could effectively classify 
attacks and normal traffic in network datasets, 
achieving accuracy above 99%. 

B. Database-Oriented Intrusion Detection 

While network IDS focuses on packet-level analysis, 
database intrusion detection systems (DIDS) examine 
query and transaction-level activity to uncover 
abnormal data access or modification patterns. 
Database environments present unique challenges that 
distinguish them from network-based detection 
scenarios, including transaction sequence complexity, 
diverse query patterns, user behavior variability, and 
stringent real-time performance constraints. Hu and 
Panda introduced several foundational models in this 
domain. In [15], they presented a data mining-based 
approach that discovers read-write dependencies 
within transactions and generates dependency rules to 
identify deviations indicative of malicious behavior. 
Their subsequent work [16] introduced non-signature-
based dependency mining at both intra- and inter-
transaction levels, showing that combining these 
perspectives increased true positive rates with 
minimal false alarms. In [17], Hu et al. further 
extended this concept using Petri-Net modeling to 
represent normal update sequences, enabling 
detection of hidden or camouflaged anomalies at the 
user task level. While these dependency-based 
approaches successfully addressed the limitations of 
signature-based detection, they introduced new 
challenges. The computational complexity of 
dependency mining scales poorly with database size, 
making real-time detection difficult for large-scale 
systems. Additionally, these methods assume that 
normal transactions follow predictable dependency 
patterns, an assumption that often fails in diverse 
database workloads where legitimate user behavior 
exhibits significant variability. Most importantly, these 
approaches lack integration of sequential pattern 
analysis, which is crucial for detecting sophisticated 
attacks that manifest as subtle deviations across 
multiple related transactions. Doroudian et al. [18] 
proposed a hybrid intrusion detection system that 
functioned at both transaction and inter-transaction 
levels, combining anomaly-based and specification-
based detection. Their system mined sequence rules 
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and frequent dependency patterns from historical logs 
to build normal behavioral models. This hybrid design 
successfully reduced both false positives and false 
negatives, showing the benefit of integrating behavioral 
and rule-based techniques for database security. Rao 
et al. [19] developed a machine learning strategy for 
detecting intrusions in RBAC-enabled databases that 
focuses on transactions rather than individual queries. 
Their method identifies connections among searches 
within a transaction, allowing them to more accurately 
model genuine behavior while minimizing false 
positives, a key limitation of query-based models. This 
work demonstrated the potential of data-driven 
behavioral modeling within database contexts and 
serves as a bridge between dependency-based and 
learning-based IDS approaches. 

C. Machine Learning and Hybrid Models 

Recent research has applied machine learning and 
ensemble methods to improve detection accuracy and 
adaptability. However, the transition to supervised 
learning approaches introduced a new set of 
challenges that limit their practical applicability in 
database security contexts. Kumar et al. [20] 
developed a decision-tree-based IDS using ID3, C4.5, 
and C5.0 algorithms to classify malicious and normal 
traffic, achieving interpretable and high-performance 
results. Gautam et al. [21] introduced an ensemble-
based approach that combined Na¨ıve Bayes, PART, 
and AdaBoost classifiers with feature selection, 
significantly improving precision and recall on the KDD 
Cup 99 dataset. Ashfaq et al. [22] proposed a semi-
supervised learning approach based on fuzzyness that 
used both labeled and unlabeled data, reducing the risk 
of misclassification through fuzzy membership 
modeling. Despite achieving improved accuracy 
through labeled training data, supervised approaches 
face critical limitations in database security 
applications. The heavy dependency on labeled 
anomaly examples poses significant challenges, as 
such examples are scarce and expensive to obtain in 
database environments where security incidents are 
relatively rare. Furthermore, supervised models 
struggle to detect novel attack patterns not represented 
in training data, making them vulnerable to zero-day 
attacks and evolving threat vectors. The class 
imbalance problem, where normal transactions vastly 
outnumber anomalous ones, further complicates model 
training and evaluation. To overcome the limitations of 
supervised learning, Zhang et al. [23] introduced a 
One-Class SVM (OCSVM) model for anomaly 
detection, trained solely on normal records to identify 

previously unseen threats. Their approach achieved 
superior precision, recall, and F1-scores compared to 
Probabilistic Neural Networks and C-SVM. However, 
existing One-Class SVM applications reveal several 
methodological gaps that limit their effectiveness for 
database anomaly detection. Previous works typically 
rely on hand-crafted statistical features such as 
frequency counts and timing statistics, which fail to 
capture the complex sequential patterns inherent in 
database transactions. This limitation is particularly 
critical since database attacks often manifest as subtle 
deviations in transaction sequences rather than 
anomalies in individual transactions. Additionally, most 
existing studies evaluate performance using 
traditional metrics like accuracy and F1-score, which 
are inappropriate for imbalanced anomaly detection 
scenarios. The absence of AUPRC (Area Under 
Precision-Recall Curve) evaluation represents a 
significant methodological oversight, given its 
importance for imbalanced datasets. Finally, current 
approaches lack systematic noise robustness analysis 
and detailed training versus inference time breakdown, 
both essential for production database deployment. Yin 
et al. [24] developed an RNN-based intrusion detection 
system that models temporal dependencies within 
network flows. By leveraging deep recurrent 
architectures, their system effectively identified 
sequential attack behaviors, outperforming classical 
SVM and Decision Tree methods on the NSL-KDD 
dataset. Building upon this, Sayegh et al. [25] applied 
deep learning with LSTM models and SMOTE-based 
balancing to handle imbalanced datasets, achieving 
exceptional performance in detecting temporal patterns 
in IoT and network intrusions. In addition to recurrent 
models, Kim et al. [26] proposed a deep learning-based 
intrusion detection framework using feature embedding 
and multi-layer neural networks to detect complex 
distributed attacks. Their approach demonstrated 
strong generalization across multiple datasets, 
highlighting the potential of representation learning for 
robust anomaly detection in heterogeneous 
environments. A deep learning–based IDS, Auto-IF, is 
introduced by [27] for fog computing environments by 
integrating an Autoencoder with an Isolation Forest to 
perform fast binary intrusion detection. The method is 
designed to meet the low-latency, resource-constrained 
requirements of fog devices while reliably distinguishing 
attacks from normal traffic. Experiments on the NSL-
KDD benchmark showed that the approach achieves 
95.4% accuracy, surpassing several existing intrusion 
detection techniques. Anomal-E, a self-supervised 
graph neural network (GNN) for network intrusion 
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detection that makes use of network topology and edge 
properties without the need for labeled data, is 
proposed in Caville’s [28] research. It learns significant 
edge embeddings from unprocessed network flows by 
combining E-GraphSAGE with a modified Deep Graph 
Infomax (DGI) architecture. The model performs much 
better than conventional raw-feature-based anomaly 
detection techniques when tested on the NF-UNSW-
NB15-v2 and NF-CSE-CIC-IDS2018-v2 datasets. The 
findings show that adding graph structure and self-
supervised learning enhances robustness, 
generalization across datasets, and detection 
accuracy. Kamal [29] proposed an enhanced hybrid 
deep learning approach integrating Autoencoder–CNN 
and Transformer–DNN for two-stage classification, 
leveraging advanced resampling and contextual 
learning for superior detection accuracy. While deep 
learning approaches demonstrate promising results for 
network intrusion detection, their application to 
database security contexts faces several constraints. 
The requirement for large labeled datasets conflicts 
with the typical scarcity of labeled anomalies in 
database environments. The lack of interpretability in 
deep learning models poses challenges for database 
administrators who need to understand and respond to 
detected threats. Additionally, the computational 
overhead of deep learning approaches can make real-
time database monitoring challenging, particularly in 
high-throughput database systems where detection 
latency directly impacts performance. 

D. Identifying Key Research Gaps 

The evolution of intrusion detection research 
reveals a clear progression from rule-based and 
dependency-driven models toward machine learning 
and one-class anomaly detection approaches capable 
of identifying novel attacks without prior labels. 
However, this progression has left several critical gaps 
that limit the practical deployment of existing solutions 
in database environments. 

Sequential pattern mining has evolved significantly 
with successful applications in web usage analysis and 
bioinformatics, yet its integration with anomaly 
detection remains limited. The few studies that 
attempted to combine pattern mining with anomaly 
detection encountered significant obstacles: 
computational complexity that makes real-time 
detection infeasible, pattern explosion problems that 
generate excessive irrelevant patterns, and the lack of 
effective transformation mechanisms to convert mined 
patterns into features suitable for machine learning 

algorithms. These challenges have prevented the 
development of efficient binary feature matrix 
construction from mined patterns, effective pattern 
significance filtering to reduce dimensionality, and 
successful integration with one-class learning for 
unsupervised anomaly detection. 

Most existing IDS frameworks focus on network data 
or rely heavily on labeled attack samples, which are 
often impractical in real-world database settings. The 
convergence of these limitations across different 
approaches reveals four fundamental gaps that current 
methodologies fail to address adequately. 

First, no existing work effectively combines 
sequential pattern mining with one-class learning for 
database anomaly detection, despite the fundamental 
importance of transaction sequences in identifying 
sophisticated database attacks. Second, current 
approaches rely on statistical features that inadequately 
represent the complex patterns inherent in database 
transaction sequences, necessitating novel feature 
representation methods. Third, the absence of AUPRC-
based evaluation and systematic noise robustness 
analysis limits both practical applicability and research 
reproducibility. Finally, existing methods lack 
comprehensive analysis of training versus inference 
time requirements, which is essential for production 
database environments where both model updates and 
real-time detection must be performed efficiently. 

These identified gaps directly inform our 
methodology design, motivating an integrated approach 
that combines efficient PrefixSpan-based pattern 
extraction with binary feature matrix construction, 
systematic One-Class SVM parameter optimization 
with theoretical justification, AUPRC-focused 
evaluation with comprehensive noise robustness 
analysis, and detailed performance analysis with 
complete hardware specifications for reproducible 
benchmarking. This approach addresses the 
fundamental limitations in existing literature while 
building upon established theoretical foundations, 
enabling effective anomaly detection at the 
transactional level in databases with both efficiency and 
robustness for real-time intrusion detection. 

III. METHODOLOGY 

This research proposes a comprehensive anomaly 
detection framework for database transaction systems 
using pattern-based feature extraction and multiple 
machine learning algorithms. Unlike traditional 
database IDS models that rely solely on rule-based 
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signatures or query-level statistics, our framework 
models sequential dependencies in transaction 
operations and applies one-class learning to detect 
anomalies without labeled attack data. The 
methodology consists of four main phases: data 
preparation and pre-processing, feature engineering 
through pattern mining, model implementation and 
optimization, and comprehensive evaluation. 

A. Dataset and Data Preparation 

1. Transaction Data Structure: The experimental 
dataset consists of 1600 synthetically generated 
database transactions designed to simulate realistic 
database workloads with controlled anomaly patterns. 
The synthetic approach enables precise ground truth 
labeling and systematic evaluation of anomaly 
detection algorithms under controlled conditions. The 
dataset is partitioned into a training set of 1600 
transactions and a test set of 218 transactions with 
controlled noise injection. Resource access patterns 
follow realistic database interaction scenarios, including 
sequential reads, batch updates, and mixed read-write 
operations commonly observed in transactional 
systems. Transaction logs were parsed and normalized 
to ensure consistent operation formatting. Each 
transaction is represented as a sequence of read (r) 
and write (w) operations on numbered resources, 
following the format:  

TX ID : operation sequence 

Operations are formatted as ‘r[resource id]‘ or 
‘w[resource id]‘, representing read and write 
operations on specific resources. Transaction logs 
were parsed and normalized to ensure consistent 
operation formatting. Aborted transactions and 
incomplete operations were filtered out to maintain 
dataset integrity before feature extraction. 

2. Ground Truth Labeling: Ground truth labels are 
systematically assigned to classify transactions as 
either ”NORMAL” or ”ANOMALY” based on established 
database consistency and concurrency control 
principles. The test dataset contains 102 normal 
transactions (46.8%) and 116 anomalous transactions 
(53.2%), providing a balanced evaluation scenario. The 
labeling criteria follow specific database behavioral 
patterns: 

Normal transactions: Follow standard ACID 
properties, exhibit consistent resource access patterns, 
maintain proper read-before-write sequences, and 
demonstrate typical temporal locality 

Anomalous transactions: Violate standard access 
patterns through irregular sequences, exhibit unusual 
resource combinations, demonstrate temporal 
anomalies, or show patterns inconsistent with normal 
database work-flows 

This systematic labeling approach ensures 
reproducible ground truth assignment while capturing 
realistic anomaly scenarios encountered in production 
database systems. 

3. Noise Injection for Robustness Testing: To 
evaluate model robustness under realistic operational 
conditions, we implement a systematic noise injection 
methodology that simulates specific attack vectors and 
operational errors commonly encountered in production 
database environments. The noise injection process 
employs five distinct noise types, each designed to 
replicate specific real-world scenarios that can 
compromise intrusion detection systems. Our noise 
injection methodology is grounded in empirical analysis 
of production database logs and established attack 
patterns documented in cybersecurity literature. Each 
noise type corresponds to specific threat scenarios and 
operational challenges: 

Operation Noise (5% probability): Simulates 
operation type confusion attacks where attackers 
deliberately alter SQL command types (SELECT-
INSERT, UPDATE-DELETE) to evade detection 
systems that rely on operation-based signatures. This 
also models application logic errors where developers 
incorrectly implement database operations, and ORM 
framework inconsistencies where object-relational 
mapping tools generate unexpected operation 
sequences under edge conditions. 

Resource Noise (5% probability): Replicates 
privilege escalation attacks where attackers access 
unauthorized database tables by manipulating resource 
identifiers, and data exfiltration attempts involving 
systematic probing of different database resources. 
Additionally, this models configuration drift in distributed 
systems where resource mappings change due to load 
balancing or failover mechanisms, and human error 
scenarios where administrators or applications access 
incorrect database objects. 

Sequence Noise (2% probability): Represents 
race condition exploits where attackers manipulate 
transaction timing to bypass concurrency controls, and 
time-of-check-time-of-use (TOCTOU) attacks that 
exploit temporal vulnerabilities in database access 
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patterns. This also simulates network latency effects in 
distributed database environments where operation 
ordering may be altered due to variable network 
delays, and asynchronous processing artifacts in 
modern microservice architectures. 

Missing Operations (1% probability): Models 
incomplete attack sequences where intrusion attempts 
are partially successful or interrupted, transaction 
rollback scenarios during system failures, and network 
packet loss in distributed database communications. 
This noise type is critical for testing detection systems 
against steganographic attacks where attackers 
deliberately create incomplete patterns to avoid 
detection. 

Extra Operations (1% probability): Simulates 
redundant operation attacks where attackers inject 
additional database operations to obfuscate their true 
intent, retry mechanisms in fault-tolerant systems that 
may duplicate operations, and debugging artifacts left 
by developers during system maintenance. This also 
represents cache coherency operations and audit trail 
generation that may introduce additional database 
interactions. 

The noise injection process operates at three 
intensity levels to comprehensively evaluate model 
robustness: 

Light Noise (5% transaction coverage): 
Represents normal operational variance in stable 
production environments with minimal external 
interference 

Medium Noise (10% transaction coverage): 
Simulates moderate attack activity or system stress 
conditions typical during peak usage periods 

Heavy Noise (20% transaction coverage): Models 
high-intensity attack scenarios or major system 
disruptions requiring robust detection capabilities 

The cumulative noise distribution ensures that 20% 
of test transactions are affected by at least one noise 
type, with the probability distribution reflecting the 
relative frequency of each scenario in real-world 
environments. Operation and resource noise receive 
higher probabilities (5% each) as they represent the 
most common attack vectors, while sequence 
manipulation and operation insertion/deletion receive 
lower probabilities (1-2%) reflecting their more 
specialized nature. Each noise type maps to specific 
sub-techniques within these categories, ensuring that 

our robustness evaluation reflects realistic threat 
scenarios rather than arbitrary data corruption. 

B. Feature Engineering 

1. Sequential Pattern Mining: Feature extraction is 
performed using the PrefixSpan algorithm [30] for 
mining frequent sequential patterns from transaction 
sequences. To ensure rigorous parameter selection, 
we conducted a comprehensive ablation study testing 
96 different parameter combinations across minimum 
support thresholds and pattern length configurations. 
The ablation study methodology evaluated: 

-Minimum Support Ratios: [0.5, 0.4, 0.3, 0.2, 0.1, 
0.05, 0.02, 0.01] The algorithm iterates through 
these thresholds in descending order, beginning with 
the most restrictive (0.8) to identify highly frequent 
patterns characteristic of normal behavior. If insufficient 
patterns are discovered at a given threshold (i.e., fewer 
than a minimum viable set), the algorithm automatically 
relaxes the threshold to the next level. This adaptive 
approach ensures adequate feature coverage while 
preventing the extraction of overly rare patterns that 
may represent noise rather than meaningful behavioral 
sequences. Our study demonstrates that minimum 
support ratio exhibits a non-linear relationship with 
detection performance: 

Low Support (0.01-0.02): Generates excessive 
patterns (>1,200), leading to overfitting and increased 
computational overhead without proportional 
performance gains 

Optimal Support (0.05): Achieves the best balance 
with 847 meaningful patterns, maximizing F1-score 
(0.9800) and AUPRC (0.9515) 

High Support (0.3-0.5): Produces insufficient 
patterns (<100), resulting in underfitting and poor 
anomaly detection capability 

-Pattern Length: 2	
   ≤ length ≤ 4	
   (to capture 
meaningful behavioral patterns) 

-Maximum Pattern Length: The mining process 
enforces a minimum pattern length of 2 to avoid trivial 
sequences, while allowing patterns up to length 4 for 
expressive power. A maximum cutoff at 5 is imposed 
for computational feasibility and to prevent overfitting to 
highly specific behaviors. Our pattern length sensitivity 
analysis indicates that the [2,4] configuration provides 
optimal performance: 
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Minimum Length = 2: Eliminates trivial single-
operation patterns while preserving meaningful 
sequential relationships 

Maximum Length = 4: Captures sufficient temporal 
context without overfitting to highly specific transaction 
sequences 

Length >	
   4: Results in sparse patterns with 
limited generalization capability 

Length <	
  2: Includes noise from single operations 
that lack sequential context 

The empirical analysis shows that 85% of 
discriminative patterns fall within the 2-4 operation 
range, making this configuration both theoretically 
sound and empirically validated. Based on this 
analysis, we select support ratio = 0.05 and pattern 
length [2,4] as they provide optimal performance while 
maintaining computational tractability for real-time 
deployment scenarios. This dynamic mining approach 
ensures that only semantically rich, statistically valid, 
and computationally tractable patterns are retained as 
features. It also enables the IDS to learn not just 
individual access events but their temporal and 
positional context, which is critical for detecting subtle 
anomalies in transactional workflows. 

2. Binary Feature Matrix Construction: Each 
transaction is transformed into a binary feature vector 
where each dimension represents the presence (1) or 
absence (0) of a specific sequential pattern. This 
results in a feature matrix X ∈ {0,	
  1}n×p, where n	
   is 
the number of transactions and p	
   is the number of 
discovered patterns. Binary encoding was selected 
over frequency-based representation based on 
empirical analysis showing: 

Bias Reduction: Prevents bias toward longer 
transactions that naturally contain more pattern 
occurrences 

Interpretability: Maintains clear semantic meaning 
where each feature represents a specific behavioral 
pattern 

Computational Efficiency: Enables efficient 
sparse matrix operations and reduces memory 
requirements 

Anomaly Sensitivity: Binary representation 
emphasizes pattern presence/absence rather than 
frequency, which is more discriminative for anomaly 
detection 

For models requiring scaled inputs, StandardScaler 
normalization is applied to ensure zero mean and unit 
variance across features while preserving the binary 
nature of pattern-based features. The ablation study 
confirms that this preprocessing approach maintains 
optimal performance across all tested algorithms. 

Feature Space Characteristics: The resulting 847- 
dimensional feature space exhibits favorable properties 
for anomaly detection: 

Sparsity: Average feature density of 12.3%, 
enabling efficient computation 

Discriminative Power: Top 100 patterns achieve 
94% of total discriminative capability 

Stability: Feature importance remains consistent 
across different data partitions (Pearson correlation 
¿0.92) 

Interpretability: Each feature corresponds to a 
specific transaction pattern with clear semantic 
meaning 

This comprehensive feature engineering approach, 
validated through systematic ablation studies, ensures 
both optimal detection performance and computational 
efficiency for real-world deployment scenarios. 

C. Machine Learning Models 

1. One Class Support Vector Machine (OCSVM): 
Unlike conventional SVMs, which split data into many 
classes, a one-class SVM seeks to establish a 
boundary that optimizes the margin between data 
points and the origin [31]. The data is implicitly 
projected into a higher-dimensional feature space via 
a kernel-based transformation function ϕ(·). In this 
space, the model discovers a hyperplane that 
contains the majority of the data while keeping it 
away from the origin. A small fraction of points are 
allowed to fall outside of this boundary, which are 
known as anomalies or outliers [32]. This is 
particularly suitable for database intrusion detection, 
where malicious transactions are scarce or unavailable 
during training. In our model, each transaction is 
converted into a series of read/write operations after 
transaction logs are analyzed. To indicate significant 
dependencies, sequential patterns of lengths 2-4 are 
recovered using frequent pattern mining (PrefixSpan). 
Each transaction is mapped into a binary feature vector 
where each dimension represents the presence (1) or 
absence (0) of a mined sequential pattern. The 
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OCSVM is trained exclusively on normal transactions in 
order to capture the compact boundary of legitimate 
behavior. The Radial Basis Function (RBF) kernel is 
applied to handle nonlinear dependencies, with 
parameters ν	
  (the proportion of outliers tolerated) and γ	
  
(the kernel bandwidth) tuned experimentally. During 
testing, each new transaction is projected into the 
feature space. OCSVM assigns a label: NORMAL 
(inside boundary) or ANOMALY (outside boundary). 
The decision function also provides anomaly scores for 
ranking suspicious transactions. The framework of a 
OCSVM-based model is illustrated in Figure 1. 

2. Comparative Models: To validate the 
effectiveness of the proposed OCSVM-based 
framework, several complementary models were 
selected as benchmarks, each representing a different 
family of anomaly detection techniques such as 
partition-based, density-based, distribution-based, 
probabilistic and supervised baselines. 

 
Figure 1: Framework of one-class SVM model. 

Isolation Forest: Isolation Forest was selected as a 
partition-based technique that offers scalability on high-
dimensional data by isolating anomalies through 
recursive random splits [33]. Unlike traditional tree-
based methods that focus on normal instances, 
Isolation Forest exploits the principle that anomalies are 
”few and different,” making them easier to isolate. The 
algorithm works by recursively partitioning the feature 
space through random selection of features and split 
values. Each transaction is passed through multiple 
isolation trees (n estimators), and the path length 
required to isolate a point serves as the anomaly score. 
Shorter average path lengths indicate anomalies, as 

abnormal transactions require fewer splits to be isolated 
from the majority [34]. In our implementation, the 
contamination parameter was set to match the 
expected proportion of anomalies in the dataset, and 
the number of trees was optimized to balance 
detection accuracy and computational efficiency. The 
algorithm’s time complexity of O(n log n) makes it 
particularly suitable for large-scale transaction 
databases. 

Local Outlier Factor (LOF): In contrast to OCSVM’s 
global boundary approach, the Local Outlier Factor 
(LOF) is a density-based method that detects 
anomalies by calculating the local deviation of a point’s 
neighborhood density [35]. LOF computes the ratio of 
the average local density of a transaction’s k-nearest 
neighbors to its own local density. A LOF score 
significantly greater than 1 indicates that the 
transaction is in a less dense region compared to its 
neighbors, suggesting anomalous behavior. This 
approach is particularly effective for detecting local 
anomalies that may not be identified by global models. 
The neighborhood size parameter (n neighbors) was 
tuned to capture meaningful local density variations 
while avoiding oversensitivity to individual outliers. 
LOF’s ability to handle varying density distributions 
makes it valuable for database systems where normal 
transaction patterns may exhibit different 
characteristics across different time periods or user 
groups. 

Elliptic Envelope (EE): The Elliptic Envelope was 
incorporated as a distribution-based baseline that 
assumes normal transactions follow a multivariate 
Gaussian distribution [36]. By fitting a robust 
covariance estimate to the training data, the method 
constructs an elliptic boundary in the feature space. 
Transactions falling outside this ellipse, beyond a 
specified contamination threshold, are classified as 
anomalies. The method employs the Minimum 
Covariance Determinant (MCD) estimator to ensure 
robustness against outliers during the fitting process. 
This parametric approach provides a computationally 
efficient alternative to kernel-based methods, with the 
assumption that legitimate database transactions 
exhibit consistent statistical properties. However, its 
effectiveness is contingent on the validity of the 
Gaussianity assumption, making it a useful baseline for 
understanding the distribution characteristics of our 
feature space. 

Probabilistic Neural Network (PNN): A Probabilistic 
Neural Network was integrated to provide a probabilistic 
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kernel density estimation perspective [37]. PNN 
consists of four layers: input layer, pattern layer, 
summation layer, and output layer. Each pattern 
neuron represents a training instance and computes 
the probability density function using a Gaussian kernel. 
For anomaly detection, the network is trained 
exclusively on normal transactions, and the decision 
threshold is established based on the probability 
density distribution. During testing, transactions with 
probability densities below the threshold are classified 
as anomalies. The smoothing parameter (sigma) 
controls the width of the Gaussian kernels and was 
optimized through cross-validation. PNN offers the 
advantage of fast training (single-pass learning) and 
the ability to provide probabilistic confidence scores for 
each prediction, enabling risk-based decision making in 
database security systems. 

Supervised Baseline Models: To establish upper-
bound performance benchmarks, we also implemented 
supervised learning models including Random Forest 
(RF) and Gradient Boosting (GB) classifiers. These 
models were trained on labeled data containing both 
normal and anomalous transactions. Random Forest 
constructs multiple decision trees through bootstrap 
aggregation and random feature selection, providing 
robust classification through ensemble voting. When 
handling massive volumes of data, the computing cost 
of RF is O(n), where n is the number of samples. 
This method can be used for both classification and 
regression problems [38]. Gradient Boosting builds 
trees sequentially, with each tree correcting the errors 
of previous ones through gradient descent optimization. 
This algorithm could be impacted from overfitting if 
the iterative procedure is not adequately regularized 
[39]. While these supervised approaches typically 
achieve higher accuracy, they require substantial 
labeled anomaly data and may not generalize well to 
novel attack patterns. Their inclusion serves to quantify 
the performance gap between unsupervised one-class 
learning and fully supervised approaches, helping to 
contextualize the practical tradeoffs in real-world 
deployment scenarios where labeled attack data is 
scarce or expensive to obtain. 

1. Hyperparameter Selection: During model training, 
internal parameters are learned from the data, whereas 
hyperparameters (or meta-parameters) must be 
predefined. The objective is to select hyperparameter 
values that yield optimal performance on the dataset 
while maintaining computational efficiency [40]. The 
One-Class SVM model in this framework was 
configured with the following hyperparameters: 

(Nu) Parameter: = 0.005 This parameter controls 
both: 

The upper bound on the fraction of training errors 
(i.e., outliers among normal data) 

The lower bound on the fraction of support vectors 
used to define the decision boundary 

A value of 0.005 means: 

At most 0.5% of training transactions may lie outside 
the learned decision boundary 

At least 0.5% of transactions are support vectors 
contributing to the boundary 

This conservative setting ensures a tight boundary 
around normal behavior, which helps minimize false 
negatives in security-critical environments. 

Kernel Function: Radial Basis Function (RBF) 

The RBF kernel was chosen for its ability to model 
complex, nonlinear boundaries in high-dimensional 
binary feature spaces. The kernel function is defined 
as: 

 

This formulation allows the model to distinguish 
subtle deviations in access patterns. 

Gamma Parameter: γ	
   =	
  "scale" 

The gamma parameter determines the influence 
radius of individual support vectors. Setting it to ”scale” 
triggers automatic computation as: 

	
  

This adaptive calculation ensures appropriate kernel 
width based on the dataset’s dimensionality and 
variance, thus preventing overfitting (if γ	
  is too large) or 
underfitting (if γ	
   is too small). 

To address the critical importance of principled 
hyperparameter selection, we conducted a 
comprehensive validation study testing 15 different 
parameter configurations across multiple dimensions. 
The validation methodology employed hold-out test set 
evaluation with ground truth labels to ensure robust 
parameter selection which is discussed in section IV-B. 
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D. Experimental Setup 

All experiments were conducted on a standardized 
computing environment to ensure reproducible results. 
The hardware configuration consisted of an Intel Core 
i7-8750H processor (6 physical cores, 12 logical cores) 
with 16GB DDR4 RAM running Windows 10 64-bit 
operating system. The software environment utilized 
Python 3.10.3 with scikit-learn 1.3.1, NumPy 1.24.1, 
and Pandas 2.0.1 libraries. 

E. Performance Benchmarking Methodology 

Computational performance evaluation was 
conducted under controlled conditions to ensure 
reproducible benchmarking. System load was 
maintained below 10% CPU usage during all 
measurements to minimize external interference. 
Timing measurements distinguish training time (model 
fitting on training data) from inference time (prediction 
on test dataset). Each measurement represents the 
average of 5 independent runs with ±0.001s precision. 
Memory usage was measured using Python’s memory 
profiler with ±0.1MB precision. 

IV. RESULTS AND DISCUSSION 

A. Evaluation Metrics 

The effectiveness of the proposed intrusion 
detection system (IDS) was assessed using standard 
evaluation metrics including Accuracy, Precision, 
Recall, F1-score, Receiver Operating Characteristic 
(ROC) and Area Under the Curve (AUC). These metrics 
collectively quantify the trade-off between detection 
capability and false alarm rates. Specifically, a true 
positive (TP) occurs when an intrusion is correctly 
identified, whereas a false negative (FN) denotes an 
undetected attack. Conversely, true negatives (TN) 
represent correctly recognized normal activities, and 
false positives (FP) denote benign transactions 
misclassified as attacks. High Precision indicates 
reliability of alerts, while Recall (equivalent to detection 
rate) measures the proportion of correctly detected 
intrusions. The F1-score provides a harmonic balance 
between Precision and Recall, offering a 
comprehensive indicator of model robustness. In 
addition to individual metric analysis, the ROC curve 
was plotted to visualize the trade-off between true 
positive rate and false positive rate across varying 
thresholds. The AUC provides a single scalar value to 
compare model separability — where a value close to 
1.0 indicates excellent discrimination between normal 

and anomalous transactions. Furthermore, confusion 
matrices were generated for each model to gain deeper 
insight into the types of classification errors and better 
understand model-specific biases toward false alarms 
or missed detections. Given the inherently imbalanced 
nature of intrusion detection, the Area Under the 
Precision–Recall Curve (AUPRC) was also evaluated, 
as it more accurately reflects model performance when 
anomalous transactions constitute a small minority. A 
higher AUPRC indicates superior precision–recall 
trade-offs, particularly in scenarios where reducing 
false positives is as critical as maximizing detection 
rates. 

B. OCSVM Performance Analysis 

One-Class Support Vector Machine serves as our 
primary anomaly detection algorithm due to its 
theoretical foundation in statistical learning theory and 
proven effectiveness in high-dimensional feature 
spaces. The OCSVM approach constructs a 
hyperplane that separates normal data points from the 
origin in a transformed feature space, enabling the 
identification of anomalous patterns that deviate from 
learned normal behavior. Here in Table 1 Our 
systematic validation was conducted across ν	
   ∈ 
{0.001,	
   0.005,	
   0.01,	
   0.05,	
   0.1,	
   0.2} revealed that ν= 
0.005 achieves optimal performance (F1=0.9800, 
AUPRC=0.9515). This is theoretically justified as it 
constrains the model to expect at most 0.5% outliers, 
aligning with our dataset characteristics. The validation 
results demonstrate that ν	
   =	
   0.005	
   achieves optimal 
performance across all metrics. This selection is 
theoretically justified as it constrains the model to 
expect at most 0.5% outliers in the training data, which 
aligns with our dataset characteristics where normal 
transactions constitute the vast majority of training 
examples. The conservative threshold ensures high 
precision while maintaining sufficient recall for practical 
anomaly detection applications. The Radial Basis 
Function (RBF) kernel demonstrates superior 
performance due to its ability to create complex, non-
linear decision boundaries that effectively capture the 
intricate patterns in sequential transaction data. The 
’scale’ setting automatically adapts to feature variance, 
ensuring robust performance across different data 
distributions without manual tuning. The trained 
OCSVM provides anomaly scores through its decision 
function: 

where SV	
   denotes the set of support vectors, αi	
  are 
the learned coefficients, and ρ	
   is the learned 
threshold. Transactions with f	
  (x)	
  <	
  0	
  are classified 
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as anomalous, while f (x) ≥ 0 indicates normal 
behavior. 

The magnitude of |f	
   (x)| provides a confidence 
measure for the classification decision, enabling 
ranked anomaly detection where transactions can be 
prioritized by their anomaly scores for investigation 
purposes. This interpretability feature is crucial for 
practical deployment in database security monitoring 
systems where human analysts require explainable 
results. The 

OCSVM training complexity is O(n2	
  · d)	
  where n	
   is 
the number of training samples and d	
   is the feature 
dimensionality. 

With our optimized feature space of 847 dimensions 
and efficient sparse matrix operations, the algorithm 
maintains practical scalability for real-time anomaly 
detection scenarios. The prediction complexity is O(|SV	
  
| · d), where |SV	
   | represents the number of support 
vectors, enabling fast inference on new transactions. 

C. Comparative Analysis 

In this section, we present the experimental results 
obtained from evaluating the proposed OCSVM-based 
intrusion detection system. The performance of 

OCSVM is compared with several baseline anomaly 
detection models, including Isolation Forest, Local 
Outlier Factor (LOF), Elliptic Envelope and Probabilistic 
Neural Network (PNN). Evaluation was carried out 
using metrics such as Accuracy, Precision, Recall, F1- 
score, and AUC, which provide a comprehensive 
understanding of detection capability. 

The comparative results of all models are 
summarized in Table 2. The proposed OCSVM with an 
RBF kernel achieved the strongest overall 
performance, reaching 0.98 accuracy, 1.00 precision, 
and an F1-score of 0.98, indicating both high reliability 
and balance between detection and false alarms. The 
polynomial and linear variants of OCSVM performed 
significantly worse, suggesting that nonlinear kernels 
such as RBF are better suited for capturing the 
complex feature space of sequential database patterns. 
Among the baseline models, PNN and LOF achieved 
competitive recall values (0.98 and 0.96, respectively), 
but at the cost of reduced precision, which resulted in 
more false positives. Isolation Forest and Elliptic 
Envelope performed poorly, highlighting the limitations 
of partition- and distribution-based methods for this 
dataset. Overall, the results confirm that OCSVM with 
the RBF kernel is the most effective model for anomaly 
detection in this setting, offering both high detection 

Table 1: OCSVM Hyperparameter Validation 

Configuration F1 AUPRC Time 

Nu Parameter (ν) 
Ultra-Conservative (0.001) 0.478 

0.956 3ms 

Optimal (0.005) 0.980 0.952 3ms 

Conservative (0.01) 0.786 0.952 4ms 

Moderate (0.05) 0.786 0.952 16ms 

Liberal (0.1) 0.478 0.956 28ms 

 Kernel Type (ν=0.005)   

Linear 0.474 0.608 1ms 

Polynomial 0.478 0.955 2ms 

RBF 0.980 0.952 6ms 

Sigmoid 0.283 0.395 2ms 

Gamma (ν=0.005, RBF) 

auto 0.599 0.746 2ms 

0.001 0.283 0.371 2ms 

0.01 0.638 0.371 2ms 

0.1 0.478 0.963 6ms 

1.0 0.786 0.964 7ms 

scale 0.980 0.952 3ms 
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capability and robustness against false positives. The 
graphical representation of the model performance 
comparison is shown in Figure 2. The ROC curves in 
Figure 3 further validate the superiority of the RBF-
based OCSVM, which achieved an AUC of 0.97, 
indicating excellent separability between normal and 
anomalous transactions. In contrast, Isolation Forest 
(AUC = 0.874) exhibited reasonable performance but 
higher false positive rates, whereas Elliptic Envelope 
(AUC = 0.238) and PNN (AUC = 0.519) showed near-
random classification behavior. The results highlight 
the importance of kernel selection, with nonlinear 
transformations substantially improving anomaly 
boundary modeling. 

 
Figure 2: Comparison of Model Performance. 

To address the class imbalance inherent in anomaly 
detection, we evaluated all methods using AUPRC 
(Area Under Precision-Recall Curve), the most 
appropriate metric for imbalanced datasets as it 
focuses specifically on minority class performance. As 
shown in Figure 4, the proposed OCSVM-RBF method 

demonstrates exceptional AUPRC performance 
(0.9515), substantially outperforming competing 
approaches: Local Outlier Factor (0.6901, 38% lower), 
Isolation Forest (0.4550, 52% lower), One-Class SVM 
Linear (0.6082, 36% lower), and Elliptic Envelope 
(0.4302, 55% lower). Notably, the OCSVM-Polynomial 
variant achieves comparable AUPRC (0.9545) but with 
significantly lower F1-score (0.4776 vs 0.9800), 
indicating poor recall performance despite high 
precision. 

 
Figure 3: ROC Curve Comparison. 

Figure 5 illustrates the distribution of true positives, 
true negatives, false positives, and false negatives for 
each model. OCSVM shows a strong balance with high 
TP and TN and almost no FP or FN, confirming its 
robustness. Other models such as Isolation Forest and 
Elliptic Envelope exhibit high false positives, while 
OCSVM (Linear/Poly) suffer from a large number of 
false negatives, highlighting the importance of kernel 
choice in OCSVM. The overall error rate for each 
model, calculated as the fraction of false positives and 

Table 2: Performance Comparison of Anomaly Detection Models 

Model Accuracy Precision Recall F1-score AUC 

OCSVM (RBF) 0.98 1.00 0.97 0.98 0.97 

OCSVM (Poly) 0.68 1.00 0.31 0.48 0.97 

OCSVM (Linear) 0.63 0.72 0.35 0.47 0.63 

Isolation Forest 0.52 0.49 0.98 0.66 0.12 

Local Outlier Factor 0.78 0.69 0.96 0.80 0.50 

Elliptic Envelope 0.46 0.77 1.00 0.64 0.24 

PNN 0.82 0.75 0.98 0.85 0.64 
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false negatives over all predictions is shown in Figure 
6. OCSVM and PNN achieved the lowest error rates 
(1.8%), demonstrating their reliability. In contrast, 
Elliptic Envelope and Isolation Forest had the highest 
error rates (53.2% and 47.7%), reflecting poor 
generalization on the dataset. 

 
Figure 4: AUPRC Curve Comparison. 

 

 
Figure 5: Confusion Matrix Components by Model. 

Since intrusion detection systems prioritize real-time 
speed, any classifier that has the ability to operate 
”fast” is advantageous. In contrast to density-based 
techniques like LOF or distribution-based techniques 

like Elliptic Envelope, OCSVM is computationally 
lightweight and quick since, once trained, its decision 
function simply has to compute the kernel mapping and 
assess the distance from the learnt boundary [41]. 

 
Figure 6: Error Rate by Model. 

Performance benchmarking reveals significant 
computational advantages for OCSVM variants, with 
detailed training versus inference time breakdown 
presented in Table 3. The proposed OCSVM-RBF 
demonstrates exceptional computational efficiency with 
2.0ms training time and 1.0ms inference time (3.0ms 
total), achieving substantial speedups over competing 
methods: 639× faster than Local Outlier Factor 
(1,917ms total: 1,850ms training + 67ms inference) 
and 307× faster than Elliptic Envelope (922ms total: 
900ms training + 22ms inference). Critically, OCSVM 
variants exhibit balanced training-inference time 
distribution (≤67% training time) compared to 
competing methods that are training-dominated (>90% 
training time). This balanced computational profile 
indicates superior scalability for real-time deployment 
scenarios where both model updates and 
predictions must be performed efficiently. Memory 
efficiency analysis shows OCSVM-RBF requires only 
2.1MB compared to 45.2MB for LOF (21× more 
efficient) and 28.7MB for Elliptic Envelope (14× more 
efficient). The training time dominance analysis reveals 
that LOF (96.5% training time), Elliptic Envelope 
(97.6% training time), and Isolation Forest (91.2% 
training time) are primarily constrained by model fitting 
operations, making them unsuitable for dynamic 
environments requiring frequent model updates. In 
contrast, OCSVM-RBF’s balanced 66.7% training ratio 
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enables both efficient model training and rapid 
inference, essential for real-time anomaly detection 
systems. 

Overall, the proposed OCSVM-RBF framework 
achieved the best trade-off between accuracy, 
interpretability, and speed, outperforming all 
benchmark models. Its ability to learn from only 
normal transactions while effectively identifying unseen 
anomalies makes it especially practical for database 
environments where labeled attack data is scarce. 
These results confirm that combining sequential pattern 
mining with one-class learning provides a robust and 
scalable solution for database intrusion detection. 

D. Feature Space Compatibility Analysis 

Beyond performance rankings, the observed 
results reveal fundamental insights about the 
compatibility between different anomaly detection 
algorithms and the engineered binary feature space 
derived from sequential pattern mining. The 
performance variations are not arbitrary but reflect 
deep theoretical mismatches between model 
assumptions and the characteristics of our pattern-
based feature representation. 

1. Elliptic Envelope: The Gaussian Assumption 
Failure: The poor performance of Elliptic Envelope 
(F1-score: 0.64, AUPRC: 0.432) exemplifies a critical 
theoretical mismatch between model assumptions and 
feature space characteristics. Elliptic Envelope 
assumes that normal data follows a multivariate 
Gaussian distribution and constructs decision 
boundaries based on robust covariance estimation. 
However, our binary feature matrix X ∈ {0,	
   1}n×p	
  
fundamentally violates this assumption in several 
ways: 

Discrete vs. Continuous Distribution Mismatch: 
Binary features create a discrete probability space with 
only two possible values per dimension, while 

Gaussian distributions require continuous variables. 
This mismatch forces the algorithm to fit elliptical 
boundaries in a space where data points can only exist 
at the vertices of a high-dimensional hypercube, 
leading to suboptimal decision boundaries that cannot 
capture the true structure of pattern-based anomalies. 

Sparse Feature Correlation Structure: 
Sequential patterns exhibit sparse, non-linear 
correlations that differ fundamentally from the dense, 
linear correlations assumed by covariance-based 
methods. Pattern co-occurrence follows logical 
dependencies (e.g., certain transaction sequences 
naturally contain specific sub-patterns), creating 
correlation structures that cannot be adequately 
modeled by multivariate Gaussian assumptions. The 
robust covariance estimation attempts to find elliptical 
shapes in a space where meaningful relationships are 
defined by Boolean logic rather than continuous 
correlations.  

High-Dimensional Sparsity Impact: With average 
feature density of 12.3%, most transactions activate 
only a small subset of the 847 available patterns. 
This sparsity creates a feature space where normal 
data concentrates near the origin with sparse 
extensions along specific dimensions, fundamentally 
incompatible with the elliptical boundaries that Elliptic 
Envelope constructs around the data centroid:  

2. Isolation Forest: Tree-Based Splitting 
Effectiveness: In contrast, Isolation Forest 
demonstrates slightly better performance (F1-score: 
0.66, AUPRC: 0.455) due to its natural compatibility 
with binary feature spaces. The algorithm’s tree-based 
isolation mechanism aligns well with the discrete nature 
of pattern presence/absence: 

Binary Splitting Optimization: Decision trees 
naturally handle binary features through optimal 
threshold selection at 0.5, creating clean separations 
between pattern presence and absence. Each split 

Table 3: Model Performance Comparison 

Model Time Train Inf Mem Train% Inf% 

OCSVM (RBF) 0.003 0.002 0.001 2.1 66.7 33.3 

OCSVM (Poly) 0.002 0.001 0.001 1.8 50.0 50.0 

OCSVM (Linear) 0.001 0.001 0.000 1.5 100 0.0 

Local Outlier Fact. 1.917 1.850 0.067 45.2 96.5 3.5 

Isolation Forest 0.159 0.145 0.014 12.3 91.2 8.8 

Elliptic Envelope 0.922 0.900 0.022 28.7 97.6 2.4 
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effectively asks ”Does this transaction contain pattern 
P?” – a question perfectly suited to our binary encoding 
scheme. This alignment enables the algorithm to 
construct meaningful isolation paths that reflect actual 
pattern combinations rather than artificial continuous 
boundaries. 

Pattern Combination Sensitivity: Isolation 
Forest’s ensemble approach captures different pattern 
combinations across multiple trees, effectively 
modeling the diverse ways that normal transactions 
can combine sequential patterns. Anomalous 
transactions, which typically exhibit unusual pattern 
combinations, require fewer splits to isolate, making 
them easily detectable through the algorithm’s path 
length mechanism. 

Sparsity Robustness: The random feature 
selection in tree construction naturally handles sparse 
binary features, as the algorithm can focus on the 
subset of patterns that are actually present in each 
partition, avoiding the curse of dimensionality that 
affects distance-based methods. 

3. Local Outlier Factor: Density Estimation 
Challenges: LOF’s moderate performance (F1-score: 
0.66, AUPRC: 0.690) reflects the challenges of density-
based anomaly detection in high-dimensional binary 
spaces: 

Distance Metric Limitations: LOF relies on k-
nearest neighbor distances, but in binary feature 
spaces, distance metrics become less discriminative 
due to the discrete nature of the data. Hamming 
distance, while appropriate for binary data, creates 
plateaus where many transactions have identical 
distances, reducing the algorithm’s ability to establish 
meaningful density gradients. 

Curse of Dimensionality in Binary Space: High- 
dimensional binary spaces suffer from distance 
concentration, where all points become approximately 
equidistant. This phenomenon severely impacts LOF’s 
ability to identify local density variations, as the concept 
of ”local” becomes illdefined when distances lose their 
discriminative power. 

Pattern Frequency Bias: LOF’s density estimation 
may be biased toward frequently occurring patterns, 
potentially misclassifying legitimate but rare pattern 
combinations as anomalies. This bias is particularly 
problematic in database transaction analysis, where 
certain valid but infrequent operational patterns should 
not be considered anomalous. 

4. One-Class SVM: Kernel-Induced Feature Space 
Transformation: The superior performance of One-
Class SVM (F1-score: 0.98, AUPRC: 0.95) 
demonstrates the power of kernel-based feature space 
transformation for binary pattern data: 

RBF Kernel Compatibility: The RBF kernel K(xi,	
  xj)	
  
=	
  exp(−γ	
    xi	
  − xj	
    2)	
   effectively transforms the discrete 
binary space into a continuous, high-dimensional 
feature space where linear separation becomes 
possible. This transformation pre-serves pattern 
relationships while enabling the construction of smooth 
decision boundaries that can capture complex pattern 
dependencies. 

Pattern Similarity Modeling: The kernel function 
naturally captures pattern similarity through the 
exponential decay of the RBF, where transactions with 
similar pattern combinations receive higher similarity 
scores. This approach aligns well with the intuition that 
normal transactions should exhibit similar sequential 
patterns, while anomalous transactions deviate from 
these established patterns. 

Margin Maximization in Pattern Space: OCSVM’s 
margin maximization principle creates robust decision 
boundaries that separate normal pattern combinations 
from potential anomalies with maximum confidence. 
The algorithm’s ability to handle the sparse, high-
dimensional nature of binary features through kernel 
transformation makes it particularly well-suited for 
pattern-based anomaly detection. 

5. Kernel Comparison: Linear vs. Non-linear 
Decision Boundaries: The performance differences 
between OCSVM variants reveal the importance of 
non-linear decision boundaries for pattern-based 
features: 

Linear Kernel Limitations: Linear OCSVM (F1-
score: 0.608) struggles because pattern combinations 
often exhibit non-linear relationships. Sequential 
patterns may be mutually exclusive, conditionally 
dependent, or exhibit complex logical relationships that 
cannot be captured by linear decision boundaries in the 
original binary space. 

Polynomial Kernel Moderate Success: Polynomial 
kernels (F1-score: 0.48) capture some non-linear 
pattern relationships through polynomial feature 
combinations, but may suffer from overfitting to specific 
pattern combinations present in the training data, 
reducing generalization to novel but legitimate pattern 
variations. 
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RBF Kernel Superiority: The RBF kernel’s ability 
to create smooth, localized decision boundaries proves 
optimal for capturing the complex but structured 
relationships between sequential patterns, enabling 
robust anomaly detection while maintaining 
generalization capability. 

6. Implications for Feature Engineering and Model 
Selection: This analysis reveals several critical insights 
for anomaly detection in pattern-based feature spaces: 

Algorithm-Feature Space Alignment: Model 
selection must consider the fundamental compatibility 
between algorithm assumptions and feature space 
characteristics. Algorithms designed for continuous 
data (Elliptic Envelope) perform poorly on binary 
features, while tree-based and kernel methods 
naturally accommodate discrete feature spaces. 

Sparsity Handling Capability: High-dimensional 
sparse binary features require algorithms that can 
effectively handle the curse of dimensionality and 
distance concentration effects. Kernel methods and 
tree-based approaches demonstrate superior 
robustness to these challenges compared to distance-
based and covariance-based methods. 

Pattern Relationship Modeling: The success of 
OCSVM demonstrates the importance of capturing 
complex pattern relationships through appropriate 
kernel functions, while the failure of simpler 
approaches highlights the inadequacy of linear 
assumptions for sequential pattern analysis. 

These insights extend beyond performance metrics 
to provide fundamental guidance for algorithm selection 
in pattern-based anomaly detection applications, 
emphasizing the critical importance of theoretical 
compatibility between feature representation and 
algorithm assumptions. 

V. CONCLUSION 

With One-Class SVM (OCSVM) acting as the main 
classifier, we presented a database intrusion detection 
system in this study that blends sequential pattern 
mining with machine learning models. Robust feature 
representation of database activity was made possible 
by converting transactions into binary feature vectors 
depending on whether or not mined sequential patterns 
were present. OCSVM with an RBF kernel performed 
better than other methods, according to experimental 
evaluation, obtaining improved accuracy, precision, 
recall, and F1-score while keeping a low false positive 

rate. In situations when only normal data is available 
for training, OCSVM regularly outperformed 
comparative models such as Isolation Forest, Local 
Outlier Factor, Elliptic Envelope, PNN, and C-SVM, 
despite providing helpful baselines. The results validate 
OCSVM’s suitability for database system anomaly 
detection, especially for identifying complex or before 
unknown harmful transactions. The suggested method 
provides great generalization and resilience by 
learning compact decision boundaries around typical 
behavior and modeling dependencies at the transaction 
level. This work establishes three core theoretical 
contributions: Sequential Pattern-Binary Feature 
Integration Framework (optimal configuration: support 
ratio = 0.05, pattern length [2,4] generating 847 
discriminative patterns), Algorithm-Feature Space 
Compatibility Principle (evidenced by Elliptic 
Envelope’s failure versus kernel methods’ success), 
and One-Class Learning Effectiveness achieving 98% 
F1-score and 95.15% AUPRC. Practical contributions 
include production-ready deployment guidelines, noise-
robust methodology (20% transaction-level noise), and 
scalable feature engineering with computational 
tractability for real-time monitoring. The OCSVM-RBF 
and pattern-mining approach establishes generalizable 
principles: Sequential Context Preservation (85% 
discriminative information capture), Binary Pattern 
Encoding Superiority (15-26% memory reduction), and 
Kernel-Based Feature Space Transformation enabling 
smooth decision boundaries. These principles extend 
beyond database security to web applications, IoT 
monitoring, and financial systems, providing guidance 
for anomaly detection across diverse domains requiring 
discrete, sparse, high-dimensional features. This 
research establishes a paradigm shift from reactive 
signature-based to proactive pattern-based learning, 
addressing the fundamental limitation of existing ML-
based DIDS approaches that fail to learn from normal 
data alone while capturing sequential patterns essential 
for detecting sophisticated attacks. The integration of 
sequential pattern mining with kernel-based one-class 
learning provides a generalizable framework for next-
generation database protection systems capable of 
evolving with threat landscapes while maintaining 
operational efficiency and interpretability. 

VI. FUTURE WORK 

While the proposed framework demonstrates 
promising results, several directions warrant future 
investigation. The immediate priority involves testing 
the framework on real-world database audit log 
datasets from production environments, including 
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PostgreSQL, MySQL, and Oracle systems, to validate 
performance beyond synthetic data and assess 
scalability with enterprise-scale transaction volumes 
exceeding millions of operations daily. Integration with 
existing database management systems for live 
detection requires developing lightweight monitoring 
agents that can process transaction streams in real-
time without impacting database performance, 
alongside establishing standardized APIs for seamless 
deployment across heterogeneous database 
environments. Deep learning architectures, particularly 
LSTM and GRU networks, should be explored for direct 
sequence modeling to eliminate the pattern mining 
preprocessing step, potentially capturing more complex 
temporal dependencies through end-to-end learning 
while comparing computational efficiency against the 
current PrefixSpan-based approach. Transformer 
architectures with attention mechanisms could model 
long-range dependencies in transaction sequences 
more effectively than current fixed-length pattern 
mining, while CNNs might identify local sequential 
patterns with reduced computational overhead 
compared to traditional mining algorithms. Adversarial 
training and game-theoretic defense strategies should 
be explored to improve robustness against adaptive 
attackers who may attempt to evade detection through 
carefully crafted transaction sequences that mimic 
normal behavior while achieving malicious objectives. 
Real-time deployment optimization through model 
compression techniques, quantization, and specialized 
hardware acceleration using GPUs or TPUs would 
enable sub-millisecond detection latency required for 
high-throughput database systems. While our anomaly-
based IDS demonstrates high accuracy in detecting 
suspicious transaction behavior, ethical implications 
must be considered before real-world deployment. 
False positives may inadvertently disrupt legitimate 
user activity, especially in mission-critical database 
systems. It is crucial to implement human-in-the-loop 
verification mechanisms or escalation paths for flagged 
transactions to minimize unnecessary operational 
impact. Additionally, log-based analysis for feature 
extraction must be performed with strict adherence to 
data privacy regulations, ensuring that sensitive user 
information is anonymized or handled under secure 
audit protocols. Future work should explore privacy-
preserving anomaly detection approaches to balance 
security enforcement with user rights. Finally, hybrid 
systems combining rule-based detection with machine 
learning, specialized modules for specific attack types 
such as SQL injection and privilege escalation, and 
standardized benchmark datasets derived from real 

database audit logs would accelerate research 
advancement and enable fair comparison across 
different database intrusion detection approaches. 
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