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Abstract: Malware detection in Windows systems remains challenging due to the rapid evolution and increasing 
complexity of malicious programs. Traditional static, dynamic, and machine learning approaches struggle to adapt to 
new or obfuscated threats. In this work, we propose a large language model (LLM) based framework for detecting 
malware at the application layer of the Windows operating system. By learning behavioral patterns from system calls 
triggered during program execution, the proposed framework allows the LLM to capture the semantic relationships 
between normal and malicious behaviors. We implement a prototype of the framework and evaluate its performance 
through experiments. 
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1. INTRODUCTION 

In recent years, the number of malware variants has 
increased rapidly. Reports show that by 2024, there 
were more than 1.2 billion distinct malware samples 
worldwide, and over 100 million new malware strains 
appeared in 2023 [36]. On average, researchers 
detected about 400,000 new malicious files each day in 
2023, which was higher than in the previous year [17, 
27]. This rapid growth in both the number and diversity 
of malware makes it highly challenging to detect and 
defend against such threats. 

Currently, Windows remains the most widely used 
operating system for both personal and enterprise 
environments [37], which also makes it the primary 
target for malware attacks. Studies show that a large 
majority of malware samples are designed to exploit 
Windows platforms due to their dominant global market 
share and extensive third-party software ecosystem 
[24]. As a result, ensuring malware detection and 
defense in Windows systems is of critical importance to 
maintaining user security and system integrity. 

Malware detection in Windows systems has been 
extensively studied using static, dynamic, and machine 
learning approaches. Static analysis inspects 
executable files without running them, relying on 
signatures, opcode sequences, or control-flow graphs 
to identify known malicious patterns [26, 32, 34]. 
Although efficient, it is ineffective against obfuscated,  
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packed, or polymorphic malware. Dynamic analysis 
instead observes runtime behaviors in sandboxed 
environments by monitoring API/system calls, file 
operations, and network activities [10, 35]. This method 
is more resilient to code obfuscation but suffers from 
high computational cost and poor scalability, and can 
be easily evaded by anti-sandbox techniques. To 
improve automation, recent studies apply machine 
learning and deep learning models that learn 
discriminative features from API call sequences, byte 

-grams, or PE-header metadata [21, 31, 33]. While 
these models achieve higher accuracy than traditional 
rule-based detectors, they still depend on handcrafted 
features and labeled datasets, and often fail to 
generalize to unseen or adversarial malware. Overall, 
static, dynamic, and ML/DL-based methods remain 
limited in adaptability and semantic understanding. 

Large language models (LLMs) have grown rapidly 
in recent years. LLMs provide a new way to solve 
malware detection by learning patterns directly from 
large amounts of data. Models like the generative pre-
trained transformer (GPT) [14] can understand both 
text and code, helping them find hidden or unusual 
behaviors that older methods may miss. After being 
trained for security tasks, LLMs can be used for 
automatic threat detection, malware analysis, and 
vulnerability discovery. For example, the BERT [19] 
model is very good at understanding the meaning and 
order of data, making it useful for recognizing malware 
patterns. 

In this work, we propose a LLM-based framework 
for detecting malware operating at the application layer 
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of the Windows operating system. The key insight 
behind our design is that when a device is 
compromised by malware, the malicious program 
typically exhibits distinctive behaviors through specific 
API calls, such as attempting to gain root privileges, 
modifying files, or altering system configurations. 
These API calls in turn trigger a series of low-level 
system calls that reflect the malware's behavior. By 
collecting and analyzing these system calls, we fine-
tune a pre-trained LLM to capture the behavioral 
characteristics that distinguish malicious activities from 
benign ones. In addition to its technical value, 
behavior-based malware detection also carries legal 
and forensic significance. System call traces captured 
during execution are used in digital forensics to 
reconstruct attack steps and document malicious 
activity. Reliable detection at this level helps 
organizations preserve meaningful evidence for 
incident investigations and supports clearer attribution 
when responding to security breaches. Moreover, 
many regulatory frameworks require auditable and 
explainable detection mechanisms. By modeling 
behavioral patterns directly from system level signals, 
our approach can strengthen evidence collection, 
improve incident response, and help organizations 
meet these compliance expectations. 

Contributions. Major contributions of this work are: 

• We collected 114 malware and benign samples 
running on the Windows operating system and 
recorded the system calls generated during their 
execution. 

• We designed a malware detection framework by 
finetuning a pretrained large language model on 
the dataset we developed. 

• We evaluated the performance of our framework. 

2. BACKGROUND 

2.1. Malware 

Malware is malicious software designed to harm, 
disrupt, or exploit computer systems and networks. 
Typical malicious behaviors include modifying or 
deleting files without authorization, creating or injecting 
code into processes, establishing unauthorized network 
connections, stealing sensitive data, logging user 
activities, encrypting files for ransom, and concealing 
its presence through evasion techniques. By monitoring 
these abnormal or suspicious behaviors, such as 
unexpected file operations, network traffic, or process 

activities, security systems can detect and defend 
against malware even when its code is obfuscated or 
previously unseen. 

2.2. Application Programming Interface Calls and 
System Calls 

Application programming interface (API) calls [29] 
are high-level functions that applications use to request 
services from the operating system or other software 
components. System calls provide the basic interface 
between user application and the OS kernel. For 
instance, the Windows API function CreateFile 
internally calls the system call NtCreateFile to access 
the file system. The relationship between API call and 
system call is described in Figure 1. 

 
Figure 1: Relationship between API calls and system calls. 

2.3. Large Language Models 

Large language models (LLMs) are neural network 
systems trained on a massive amount of data in order 
to understand and generate human language. Almost 
all modern LLMs use Transformer architecture. 
Transformer architecture is a neural network 
architecture that allows models to process sequences 
of text in parallel, significantly speeding up training and 
improving contextual understanding. 

3. SYSTEM AND ADVERSARIAL MODEL 

We consider a computing device running the 
Windows operating system, such as a desktop or 
workstation, that executes multiple user-level 
applications and background services. Malware may 
compromise one or more applications at the application 
layer through malicious email attachments or Trojan 
horses [40]. Once activated, the malware can carry out 
various malicious actions, such as credential theft, file 
encryption, or launching additional payloads. 

In our adversarial model, we assume an attacker 
operating entirely at the application layer. The attacker 
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cannot alter kernel-level system call behavior, but can 
modify the malware’s user-level execution patterns to 
evade behavioral detection. This includes obfuscating 
control flow, adding benign API calls, and delaying or 
splitting malicious actions across multiple processes. 
We also assume the attacker is aware of LLM-based 
detection approaches and may attempt to shape the 
observable behavior of the application to appear more 
benign, although they do not have white-box access to 
our model. We do not consider evasion attacks based 
on adversarial API-call manipulation, nor attacks that 
exploit LLM vulnerabilities such as adversarial prompts 
or poisoned inputs. 

4. TERMINOLOGY 

• Token - A token is the fundamental unit of data 
used by language models and serves as a 
building block for processing text. Importantly, 
one API call does not necessarily correspond to 
a single token. For example, the API call 
NtCreateFile may be split into two tokens: Nt and 
CreateFile. 

• Process - A running instance of an executable 
program. A single executable may create 
multiple processes, each with its own sequence 
of API calls. 

• Chunk - A contiguous subset of system calls 
from a process. The subset typically has a 
limited length (e.g., 512 for the RoBERTa-base 
model). Each chunk serves as an individual 
training sample. 

5. DESIGN 

5.1. Overview 

To detect application-level malware on Windows, a 
detector should monitor the system calls issued by 
programs and use those traces as input to a classifier. 
This task requires two main steps: 1) collect and 
extract sequences of system calls from both benign 
software and malicious samples; and 2) determine 
whether a trace indicates malware using a pre-trained 
classifier. We use large language models as the 
classifier. Since general-purpose large language 
models are not trained for malware detection, we fine-
tune them on the collected system-call traces so that 
they can learn to distinguish malicious behavior from 
normal activity. Our design includes the following 
components: data collection, data preparation, and 
model training. We will elaborate on each of them 
below. 

5.2. Data Collection 

We have collected 114 malware samples and 114 
benign samples. Each sample is an executable file that 
can be executed on the Windows. The malware 
samples were obtained from MalwareBazaar [3], a 
platform that provides the latest samples and threat 
intelligence. The benign samples were collected from 
FOSSHUB [2], NirSoft [5], SourceForge [7], and 
Microsoft [4]. As illustrated in Figure 2, the malware 
and benign samples are executed in an isolated 
sandbox environment. After each execution, the 
system is restored to its initial state to ensure a clean 
environment. This procedure is repeated until all 
samples (both malware and benign) have been tested. 
After each run, a JSON report is generated containing 
detailed information about the process and the API 
calls invoked during the execution. 

 
Figure 2: Data pipeline for a single executable. 

From each JSON report we extract the processes 
and their ordered API call names. The sequences are 
partitioned into fixed-length JSON chunks, with a partial 
overlap between consecutive chunks to preserve 
contextual continuity across boundaries. We use a 64 
token overlap for 512 and 256 token chunks, dropping 
it to a 32 token overlap for 128 token chunks. 
Processes with less than 20 calls were dropped to 
ensure each sample contains sufficient information for 
meaningful classification. Very short behavioral traces 
can introduce noise and potentially reduce model 
performance. Each chunk is associated with the 
following three metadata fields. 

• Label - Indicates the class used for supervised 
learning: 0 for benign samples and 1 for 
malicious samples. 
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• Analysis_ID - A unique identifier assigned to 
each executable file. Every executable executed 
within the sandbox is associated with a distinct 
ID, ensuring that each process can be precisely 
traced back to its originating executable. 

• Process_ID - A unique identifier assigned to 
each process generated by an executable during 
execution. Since a single executable may have 
multiple processes, each process is assigned a 
distinct process ID to enable precise tracking. 

5.3. Data Preparation 

After generating the JSON chunks and adding the 
metadata, we performed several preprocessing steps 
to prepare the dataset for model training. The main 
steps are as follows.  

Chunk Aggregation. All generated chunks were 
randomly merged into a single JSON Lines (JSONL) 
file. A JSONL file stores multiple JSON objects, with 
one object per line.This format makes it efficient to 
store and process large datasets. 

Deduplication. A deduplication step was applied 
across the entire JSONL file to remove redundant 
entries. This process eliminated duplicate chunks to 
ensure that only unique behavioral data were retained 
for model training. 

Dataset Splitting. The dataset was divided into 
training, validation, and testing subsets, using a 60%, 
20% and 20% split, respectively. To avoid data 
leakage, chunks were grouped by their Analysis_ID 
before splitting. This ensures that all chunks originating 
from the same application remain within the same 
subset. 

5.4. Model Training 

We fine-tune the model using the AdamW 
optimization algorithm, a variant of Adam (Adaptive 
Moment Estimation) that decouples weight decay from 
gradient updates, leading to better generalization and 
training stability. We do not cap or down-sample the 
larger class. Instead, during training, we apply a 
process-uniform sampler, where each chunk is 
sampled with weight wi = 1/|C(p)|, where |C(p)| denotes 
the number of chunks in process p. We include a small 
class term in the training sampler so that benign and 
malware examples are presented at roughly the same 
rate each epoch. This approach prevents the majority 
class from dominating and improves learning for the 

minority class. The re-balancing is applied only during 
training.  

6. IMPLEMENTATION AND EVALUATION 

6.1. Experimental setup 

Data collection was performed in CAPEv2 [1], an 
open-source sandbox derived from the Cuckoo v1 
sandbox. CAPEv2 was run inside an isolated Windows 
10 virtual machine. CAPEv2 collects detailed data such 
as behavioral logs, file modifications, network traffic 
and memory dumps. In this work, we focus on the API 
calls and their corresponding processes. To avoid bias, 
we also removed processes containing fewer than 20 
API calls and duplicate processes. A summary of the 
collected data is presented in Table 1. 

Table 1: Number of Processes before and after Filtering 

Class Original < 20 calls Duplicate Final 

Malware 405 30 9 366 

Benign 145 7 3 135 

 

The model used for training and detection is 
RoBERTabase [6], a pretrained Transformer-based 
language model originally released in 2019. It was fine-
tuned on our training dataset using the Hugging Face 
Transformers library and PyTorch within a Google 
Colab environment equipped with an NVIDIA T4 GPU. 
The parameters we used to train our model are shown 
in Table 2. 

Table 2: Training Parameters used for Fine-Tuning the 
RoBERTa-Base Model 

Parameter Value 

Learning rate 1e - 5  

Weight decay 0.01 

Batch size 4 

Gradient accumulation 4 

Max training epochs 18 

 

We applied early stopping using the validation F1 
score with a patience of five epochs. Training was 
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stopped when the F1 score did not improve for five 
consecutive epochs, and the model was restored to the 
checkpoint with the highest F1. In our experiments, 
training typically completed in about twelve epochs. We 
also used a cosine learning rate schedule with a warm-
up ratio of 10%, and a fixed random seed was applied 
to ensure reproducibility.  

6.2. Metrics 

To evaluate the effectiveness of our proposed 
detection model, we first define four key terms: true 
positive (TP), false negative (FN), false positive (FP), 
and true negative (TN). Based on these definitions, we 
leverage several widely used classification metrics, 
including accuracy (Acc), precision, recall, F1 score, 
false positive rate (FPR), and false negative rate 
(FNR). The definitions of these metrics are as follows: 

Accuracy (Acc): The ratio of correctly classified 
samples to the total number of samples. 

 

Precision: The ratio of correctly predicted positive 
samples to all predicted positives. 

 

Recall: The ratio of correctly predicted positive samples 
to all actual positives. 

 

F1 Score (F1): The harmonic mean of precision and 
recall, reflecting a balance between them. 

 

False Positive Rate (FPR): The ratio of negative 
samples incorrectly predicted as positive. 

 

False Negative Rate (FNR): The ratio of positive 
samples incorrectly predicted as negative. 

 

6.3. Behavioral Analysis 

As shown in Table 3, distinct behavioral patterns 
can be observed between malware and benign 

software. One significant observation is that malware 
has fewer API calls per process (2,910) compared to 
benign software (5,234). The main reason is that 
malware usually executes shorter and more focused 
sequences of API calls, often designed to achieve 
specific malicious goals such as privilege escalation or 
file modification. In contrast, benign software tends to 
perform more diverse and long-running operations, 
including user interactions, background activities, and 
complex system functions. For example, malware may 
quickly encrypt files using a short sequence of file 
access and encryption APIs, while a word processor 
performs many different operations such as editing and 
saving documents. 

Table 3 also reveals differences beyond API-call 
counts. Malware processes generate substantially 
fewer tokens overall (13,132 on average) compared to 
benign processes (26,669). This reduced volume 
suggests that malware tends to operate in compact 
execution bursts, often minimizing unnecessary system 
interactions to reduce detection surface. Benign 
software, by comparison, produces longer and more 
heterogeneous execution traces because it performs 
multiple functions, maintains state, and interacts with 
various subsystems over time.  

Table 3: Tokens and API Calls by Class 

Class Total 
tokens 

Avg 
tokens/Proc 

Avg 
calls/Proc 

Malware 4,806,313   13,132 2,910 

Benign 3,600,180   26,669 5,234 

 

6.4. Evaluation 

6.4.1. Model Performance Under Different Chunk 
Sizes 

After training, we calibrate probabilities using 
temperature scaling on the validation set in order to 
minimize negative log-likelihood (NLL). 

 

We then sweep decision thresholds on the 
validation set in order to maximize F1 for each 
aggregation. The chosen temperature and thresholds 
are applied once to the test set before evaluation. The 
trained model is employed to evaluate the malware 
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detection performance on the testing dataset. To 
investigate the effect of chunk length on the detection 
rate, we vary it to 512, 256, and 128, respectively. 512 
corresponds to the maximum sequence length used 
during the pre-training of RoBERTa-base [6]. Chunk 
sizes of 256 and 128 tokens are also commonly used 
when fine-tuning Transformer-based models [50, 51].	
  
The model outputs a malware probability for each 
individual chunk. We will refer to each of these as a 
chunk-level probability. To produce a single process-
level probability the corresponding chunk-level 
probabilities are aggregated together using three 
methods: 

Prob_mean: the average of all chunk probabilities. 

 

Prob_p95: the 95th percentile of the chunk 
probabilities, which emphasizes strong evidence while 
mitigating noise. 

 

Prob_max: the maximum chunk probability, capturing 
the strongest signal but making the prediction more 
sensitive to outliers. 

 

The same aggregation methods are then used to 
produce an application-level probability, where all 
process-level probabilities corresponding to that 
application are combined to yield a final prediction. 

The results are shown in Table 4. We can detect 
that, at the application level, prob_mean with the 
default 512 token chunks remains the most balanced 
and deployment ready aggregation method, achieving 
93% accuracy, 96% precision, 92% recall, 0.94 F1, 5% 
FPR, and 8% FNR. When the chunk size is reduced to 
256 tokens, prob_p95 improves markedly—its false 
positive rate drops from 63% to 36% while maintaining 
perfect recall, demonstrating better precision-recall 
tradeoffs. At 128 tokens, performance for prob_mean 
closely mirrors that of the 512-token configuration, with 
only marginal differences across all metrics, suggesting 
that the model's decision stability is largely invariant to 
smaller chunk sizes. Prob_max remains nearly 
unchanged across all window sizes, reinforcing that 
chunk length has minimal influence on its strongest 
activation signals. Overall, prob_mean (512) and 

prob_mean (128) show consistent, reliable 
generalization, while prob_p95 (256) continues to offer 
the best high recall configuration. 

6.4.2. Confusion Matrices at Tuned Thresholds 

A confusion matrix is a table used to evaluate the 
performance of a classification model by comparing its 
predictions to the true labels. This provides deeper 
insight into how the model behaves, beyond summary 
metrics such as accuracy or F1. Tables 5, 6, and 7 
below show the respective confusion matrix at the 
application level using a 512 chunk size for 
prob_mean, prob_p95 and prob_max. From the results, 
the confusion matrices show strong separability 
between malware and benign applications. prob_mean 
offers the most balanced performance, with very few 
false positives and false negatives. In contrast, 
prob_p95 and prob_max produce higher true-positive 
rates but also more false positives, indicating a 
tendency to over-predict malware. 

6.4.3. Receiver Operating Characteristic Curve and 
Area Under Curve  

The Receiver Operating Characteristic (ROC) curve 
provides a graphical summary of a model’s ability to 
distinguish between classes across all possible 
decision thresholds. The Area Under the Curve (AUC) 
corresponds to the probability that the model assigns a 
higher risk score to a randomly selected malware 
sample than to a randomly selected benign sample.  

We plot the ROC curves for application-level 
classification using the prob_mean, prob_p95, and 
prob_max aggregation methods. The corresponding 
results are shown in Figures 3, 4, and 5, respectively. 
The results show that prob_mean achieves an AUC of 
0.989, indicating excellent separability between 
malware and benign applications. In other words, the 
model assigns a higher risk score to a randomly 
chosen malware application than to a randomly chosen 
benign application in 98.9% of cases. Both prob_p95 
and prob_max (Figures 4 and 5) achieve an AUC of 
0.949, demonstrating strong separability but 
consistently lower performance compared to 
prob_mean. These findings reinforce that prob_mean 
provides the most stable and deployment-ready 
aggregation method.  

6.4.4. Deployment Feasibility  

We also evaluated the runtime performance of the 
detector . With a chunk size of 512, the model achieves 
a mean per-chunk latency of 2.82 ms, a throughput of 



Large Language Model-Based Malware Detection Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1      101 

Table 4: Test Performance at Tuned Decision Thresholds for Three Chunk Sizes (512, 256, and 128 Tokens) 

Level / Acc Precision Recall F1 FPR FNR Threshold 

Chunk size = 512 

Process Level 

prob_mean 0.94 0.92 1.00 0.96 0.26 0.00 0.5 

prob_p95 0.84 0.83 1.00 0.91 0.65 0.00 0.55 

prob_max 0.82 0.81 1.00 0.89 0.74 0.00 0.7 

Application Level 

prob_mean 0.93 0.96 0.92 0.94 0.05 0.08 0.8 

prob_p95 0.70 0.63 1.00 0.77 0.63 0.00 0.55 

prob_max 0.65 0.60 1.00 0.75 0.73 0.00 0.5 

Chunk size = 256 

Process Level 

prob_mean 0.91 0.94 0.94 0.94 0.17 0.06 0.7 

prob_p95 0.90 0.89 1.00 0.94 0.39 0.00 0.8 

prob_max 0.82 0.81 1.00 0.89 0.74 0.00 0.9 

Application Level 

prob_mean 0.91 0.95 0.86 0.91 0.05 0.13 0.75 

prob_p95 0.83 0.75 1.00 0.86 0.36 0.00 0.9 

prob_max 0.65 0.60 1.00 0.75 0.73 0.00 0.9 

Chunk size = 128 

Process Level 

prob_mean 0.95 0.96 0.97 0.97 0.13 0.03 0.6 

prob_p95 0.90 0.90 0.99 0.94 0.34 0.01 0.85 

prob_max 0.86 0.87 0.97 0.91 0.48 0.03 0.9 

Application Level 

prob_mean 0.93 0.92 0.96 0.94 0.09 0.04 0.65 

prob_p95 0.93 0.89 1.00 0.94 0.14 0.00 0.9 

prob_max 0.78 0.71 1.00 0.83 0.45 0.00 0.9 
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Table 5: Confusion Matrix for prob_mean at the 

Application Level (512 Chunk Size) 

 Actual Malware Actual Benign 

Predicted Malware 22 1 

Predicted Benign 2 21 

 

Table 6: Confusion Matrix for prob_p95 at the 
Application Level (512 Chunk Size) 

 Actual Malware Actual Benign 

Predicted Malware 24 14 

Predicted Benign 0 8 

 

Table 7: Confusion Matrix for prob_max at the 
Application Level (512 Chunk Size) 

 Actual Malware Actual Benign 

Predicted Malware 24 16 

Predicted Benign 0 6 

 

 
Figure 3: ROC curve for application-level classification using 
the prob_mean aggregation method (512 chunk size). 

355.1 chunks per second, and uses about 1.6 GB of 
memory during inference. On average, each process 
generates 35.36 chunks, and each application 

generates 72.26 chunks. This leads to an estimated 
end-to-end detection time of about 100 ms per process 
and about 204 ms per application. In both cases, the 
full classification completes in well under 250 ms, 
which is suitable for near–real-time use. 

 
Figure 4: ROC curve for application-level classification using 
the prob_p95 aggregation method (512 chunk size). 

 

 
Figure 5: ROC curve for application-level classification using 
the prob_max aggregation method (512 chunk size). 

7. DISCUSSION 

7.1. Limitation on Detection Scope 

One limitation of our work is that it focuses solely on 
detecting malware at the application layer. Our 
approach analyzes system calls and behavioral 
patterns generated by user-level processes, enabling 
effective identification of malicious activities within 
applications. However, it does not address threats that 
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compromise the operating system itself, such as 
kernel-level rootkits [22] or other low-level attacks that 
can bypass user space monitoring. Defending against 
such OS-level malware requires additional 
mechanisms, such as hypervisor based monitoring [9], 
or hardware-assisted security techniques [15], which 
are beyond the scope of this work. 

7.2. Real-Time Detection Constraint 

Although the proposed model effectively detects 
malicious behaviors from system call sequences, the 
inference process of large language models can be 
computationally intensive. This may introduce 
noticeable latency when analyzing continuous streams 
of system calls in real-world environments. As a result, 
deploying the model for real-time malware detection 
becomes challenging, especially on systems with 
limited computing resources. Future work could explore 
lightweight model architectures or hardware 
acceleration techniques to reduce overhead. 

7.3. Platform Dependency 

Our model and data collection process are 
specifically designed for the Windows operating 
system, leveraging system calls and behaviors unique 
to this environment. As a result, applying the same 
model to other platforms, such as Linux, macOS, or 
Android, is non-trivial due to differences in system call 
interfaces. Future work may focus on integrating cross-
platform datasets to enhance the model's 
generalization and adaptability. 

7.4. Bias from Excluding Short Malware Traces 

We removed duplicate processes and processes 
containing fewer than 20 API calls to ensure each 
sample provides sufficient and meaningful behavioral 
data. However doing so may introduce bias by under-
representing short malware traces. Such traces, while 
short, may be relevant for security and by excluding 
these the model becomes biased towards longer 
behavioral patterns. Future work should incorporate 
these short traces to more accurately reflect real world 
data. 

7.5. Dataset limitations 

A key limitation of this work is the relatively small 
dataset, consisting of 114 malware and 114 benign 
executables. Although each executable generates 
multiple processes and system-call chunks, the overall 
behavioral diversity remains limited, which may restrict 

the model’s ability to generalize to broader real-world 
malware families. The small dataset size also 
increases the risk of overfitting, particularly when fine-
tuning large language models that may memorize 
recurring behavioral patterns rather than learning 
robust semantic distinctions. Expanding the dataset to 
include more diverse malware families is an important 
direction for future work to enhance both robustness 
and generalization. 

7.6. Forensic and Evidentiary Implications 

Our malware-detection framework also carries 
meaningful implications for digital forensics and legal 
proceedings. The system call traces and model-
generated classification logs can serve as reproducible 
behavioral records that support incident reconstruction, 
attribution, and timeline analysis during investigations. 
Because these logs document how an application 
behaved at the system call level, they can be 
preserved as digital evidence and referenced in legal or 
organizational review processes. The model’s outputs 
can also be audited because the preprocessing steps 
and decision rules are fixed and easy to check. Basic 
explainability further shows which behaviors led to a 
decision, which helps improve trust and supports the 
use of these results as evidence. 

7.7. High FPR for prob_p95 and prob_max 

Both aggregations are sensitive to spikes or bursts 
of suspicious behavior, leading to an increase in falsely 
classified benign files. However as a trade off they 
achieve perfect or near perfect recall at all chunk sizes. 
Due to this high sensitivity prob_mean is recommended 
for deployment, achieving better stability while 
maintaining accuracy, precision and recall.  

8. RELATED WORK 

8.1. Signature-Based Malware Detection 

A signature is a distinctive feature of malware that 
encapsulates its structural characteristics and uniquely 
identifies each sample. Signature-based detection is 
one of the most widely adopted techniques in 
commercial antivirus systems, where predefined 
signatures are used to recognize and block known 
malware. F. Zolkipli and Jantan designed a malware 
detection framework that combines signature-based 
methods, a genetic algorithm, and an automatic 
signature generator [44]. Tang et al. developed a 
bioinformatics approach that aligns sequences, 
removes noise, and converts results into simplified 
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regular-expression signatures compatible with existing 
intrusion detection systems [39]. Borojerdi and Abadi 
introduced MalHunter, a detection system that uses 
sequence clustering and alignment to automatically 
generate behavior-based signatures for polymorphic 
malware [13]. 

8.2. Behavior-Based Malware Detection 

The behavior-based malware detection approach 
monitors program activities using analysis tools and 
determines whether a program exhibits malicious or 
benign behavior. Fukushima et al. [20] proposed a 
behavior-based detection approach capable of 
identifying both unknown and encrypted malware on 
Windows systems. Christodorescu et al. [16] proposed 
a semantics-aware malware detection approach, 
observing that certain malicious behaviors consistently 
appear across all variants of a malware family. A 
supervised machine learning model was proposed in 
[30], employing a kernel-based SVM with weighting 
measures that calculate the frequency of each library 
call to detect Mac OS X malware. 

8.3. Heuristic-Based Malware Detection 

Heuristic-based malware detection is a complex 
approach that leverages prior knowledge, rules, and 
machine learning techniques to identify malicious 
software. Arnold and Tesauro proposed an 
automatically generated heuristic framework for 
detecting Win32 viruses [8]. Their approach builds 
multiple neural network classifiers capable of 
identifying previously unknown Win32 malware. 
Yanfang et al. [42] proposed the Intelligent Malware 
Detection System (IMDS), which employs objective-
oriented association (OOA) mining based on Windows 
API call analysis. Naval et al. [28] proposed a dynamic 
malware detection system that captures system calls 
and constructs a graph to identify semantically relevant 
paths among them. 

8.4. Transformer-Based and LLM-based Malware 
Detection 

Recent advances in transformer architectures have 
inspired a new class of malware detection techniques 
that reduce dependence on handcrafted features. Raff 
et al. [31] introduced MalConv, a deep learning 
architecture capable of processing raw executable 
bytes to detect malware without manual feature 
engineering. Feng et al. proposed LLM-MalDetect [46], 
which leverages a fine-tuned large language model to 
integrate permissions, API calls, and string-based 

semantic features extracted from Android APKs to, 
achieving higher accuracy. Their results demonstrate 
that LLMs can capture richer behavioral and contextual 
information than traditional ML/DL approaches. Zhou et 
al. [47] proposed SRDC, a semantics-based 
ransomware detection and classification framework 
that combines internal feature semantics with external 
LLM-generated knowledge to improve robustness and 
generalization. Their results show that SRDC 
significantly outperforms traditional ML/DL methods. 

8.5. Other Malware Detection Technologies 

Other malware detection technologies include 
model checking-based malware detection [11, 23, 25], 
deep learning-based malware detection [12, 18, 43], 
and cloud-based malware detection [38, 41]. 

8.6. Forensic and Regulatory Perspectives on 
Automated Detection 

Beyond technical detection methods, prior work has 
highlighted the forensic and regulatory importance of 
automated malware-analysis systems. Behavioral 
artifacts such as system-call traces, audit logs, and 
execution traces provide reproducible digital evidence 
that supports incident reconstruction and attribution in 
forensic investigations [48]. Likewise, regulatory 
frameworks such as NIST SP 800-53 [49] emphasize 
the need for transparent, auditable, and timely 
detection mechanisms to meet incident-response 
obligations. These works demonstrate that automated 
detection systems play a significant role not only in 
identifying malicious behavior but also in ensuring 
evidentiary integrity and regulatory compliance. 

9. CONCLUSION 

This paper presents a framework for binary 
classification between malicious and benign Windows 
applications. A pretrained RoBERTa model was fine-
tuned using a structured dataset of API call traces. 
Among the tested aggregation strategies, prob_mean 
demonstrated the most reliable and stable performance 
across all chunk sizes, with the default 512-token 
configuration achieving 92% recall and a 0.94 F 1 at 
the application level. The 128 -token configuration 
showed nearly identical results, indicating strong 
consistency and robustness. Prob_p95 remained the 
second most promising method, particularly at 256 
tokens, where it achieved perfect recall (1.00) with 
improved precision compared to larger chunks. Overall, 
the results show that the proposed framework 
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effectively distinguishes malware from benign behavior 
on Windows systems and remains stable under varying 
input sizes, making it well-suited for real-world 
deployment. 

Future work can expand the system in several 
ways. Adding stronger explainability would show which 
behaviors shape the model’s decisions. Connecting the 
detector with forensic tools could improve incident 
reconstruction and evidence handling. It will also be 
important to test the model against adversarial 
behavior. Additionally, aligning the system with policy 
and audit requirements can support deployment in real 
environments. 
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