Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, 1, 95-106 95

Large Language Model-Based Malware Detection for the Windows

Operating System

Charles Clark' and Niusen Chen?’

"Department of Computer Sciences, University of Wisconsin-Madison, 1210 W Dayton St, Madison, WI

53706, USA

2Department of Computer Science & Engineering, University of Nevada, Reno, 1071 Evans Ave, Reno, NV

89512, USA

Abstract: Malware detection in Windows systems remains challenging due to the rapid evolution and increasing
complexity of malicious programs. Traditional static, dynamic, and machine learning approaches struggle to adapt to
new or obfuscated threats. In this work, we propose a large language model (LLM) based framework for detecting
malware at the application layer of the Windows operating system. By learning behavioral patterns from system calls
triggered during program execution, the proposed framework allows the LLM to capture the semantic relationships
between normal and malicious behaviors. We implement a prototype of the framework and evaluate its performance

through experiments.

Keywords: Malware detection, Windows, large language models.

1. INTRODUCTION

In recent years, the number of malware variants has
increased rapidly. Reports show that by 2024, there
were more than 1.2 billion distinct malware samples
worldwide, and over 100 million new malware strains
appeared in 2023 [36]. On average, researchers
detected about 400,000 new malicious files each day in
2023, which was higher than in the previous year [17,
27]. This rapid growth in both the number and diversity
of malware makes it highly challenging to detect and
defend against such threats.

Currently, Windows remains the most widely used
operating system for both personal and enterprise
environments [37], which also makes it the primary
target for malware attacks. Studies show that a large
majority of malware samples are designed to exploit
Windows platforms due to their dominant global market
share and extensive third-party software ecosystem
[24]. As a result, ensuring malware detection and
defense in Windows systems is of critical importance to
maintaining user security and system integrity.

Malware detection in Windows systems has been
extensively studied using static, dynamic, and machine
learning approaches. Static analysis inspects
executable files without running them, relying on
signatures, opcode sequences, or control-flow graphs
to identify known malicious patterns [26, 32, 34].
Although efficient, it is ineffective against obfuscated,

*Address correspondence to this author at the Department of Computer
Science & Engineering, University of Nevada, Reno, 1071 Evans Ave, Reno,
NV 89512, USA; E-mail: niusenc@unr.edu

packed, or polymorphic malware. Dynamic analysis
instead observes runtime behaviors in sandboxed
environments by monitoring APl/system calls, file
operations, and network activities [10, 35]. This method
is more resilient to code obfuscation but suffers from
high computational cost and poor scalability, and can
be easily evaded by anti-sandbox techniques. To
improve automation, recent studies apply machine
learning and deep learning models that learn
discriminative features from API call sequences, byte
1-grams, or PE-header metadata [21, 31, 33]. While
these models achieve higher accuracy than traditional
rule-based detectors, they still depend on handcrafted
features and labeled datasets, and often fail to
generalize to unseen or adversarial malware. Overall,
static, dynamic, and ML/DL-based methods remain
limited in adaptability and semantic understanding.

Large language models (LLMs) have grown rapidly
in recent years. LLMs provide a new way to solve
malware detection by learning patterns directly from
large amounts of data. Models like the generative pre-
trained transformer (GPT) [14] can understand both
text and code, helping them find hidden or unusual
behaviors that older methods may miss. After being
trained for security tasks, LLMs can be used for
automatic threat detection, malware analysis, and
vulnerability discovery. For example, the BERT [19]
model is very good at understanding the meaning and
order of data, making it useful for recognizing malware
patterns.

In this work, we propose a LLM-based framework
for detecting malware operating at the application layer

E-ISSN: 3070-5789/2025

96 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

of the Windows operating system. The key insight
behind our design is that when a device is
compromised by malware, the malicious program
typically exhibits distinctive behaviors through specific
API calls, such as attempting to gain root privileges,
modifying files, or altering system configurations.
These API calls in turn trigger a series of low-level
system calls that reflect the malware's behavior. By
collecting and analyzing these system calls, we fine-
tune a pre-trained LLM to capture the behavioral
characteristics that distinguish malicious activities from
benign ones. In addition to its technical value,
behavior-based malware detection also carries legal
and forensic significance. System call traces captured
during execution are used in digital forensics to
reconstruct attack steps and document malicious
activity. Reliable detection at this level helps
organizations preserve meaningful evidence for
incident investigations and supports clearer attribution
when responding to security breaches. Moreover,
many regulatory frameworks require auditable and
explainable detection mechanisms. By modeling
behavioral patterns directly from system level signals,
our approach can strengthen evidence collection,
improve incident response, and help organizations
meet these compliance expectations.

Contributions. Major contributions of this work are:

. We collected 114 malware and benign samples
running on the Windows operating system and
recorded the system calls generated during their
execution.

. We designed a malware detection framework by
finetuning a pretrained large language model on
the dataset we developed.

. We evaluated the performance of our framework.
2. BACKGROUND

2.1. Malware

Malware is malicious software designed to harm,
disrupt, or exploit computer systems and networks.
Typical malicious behaviors include modifying or
deleting files without authorization, creating or injecting
code into processes, establishing unauthorized network
connections, stealing sensitive data, logging user
activities, encrypting files for ransom, and concealing
its presence through evasion techniques. By monitoring
these abnormal or suspicious behaviors, such as
unexpected file operations, network traffic, or process

activities, security systems can detect and defend
against malware even when its code is obfuscated or
previously unseen.

2.2. Application Programming Interface Calls and
System Calls

Application programming interface (API) calls [29]
are high-level functions that applications use to request
services from the operating system or other software
components. System calls provide the basic interface
between user application and the OS kernel. For
instance, the Windows APl function CreateFile
internally calls the system call NtCreateFile to access
the file system. The relationship between API call and
system call is described in Figure 1.

! Application [3]

U (’d ([t
ser mode API @
EE ; System Call ij]
Kernel mode t ol
[Kernel]

Figure 1: Relationship between API calls and system calls.

2.3. Large Language Models

Large language models (LLMs) are neural network
systems trained on a massive amount of data in order
to understand and generate human language. Almost
all modern LLMs use Transformer architecture.
Transformer architecture is a neural network
architecture that allows models to process sequences
of text in parallel, significantly speeding up training and
improving contextual understanding.

3. SYSTEM AND ADVERSARIAL MODEL

We consider a computing device running the
Windows operating system, such as a desktop or
workstation, that executes multiple user-level
applications and background services. Malware may
compromise one or more applications at the application
layer through malicious email attachments or Trojan
horses [40]. Once activated, the malware can carry out
various malicious actions, such as credential theft, file
encryption, or launching additional payloads.

In our adversarial model, we assume an attacker
operating entirely at the application layer. The attacker

Large Language Model-Based Malware Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 97

cannot alter kernel-level system call behavior, but can
modify the malware’s user-level execution patterns to
evade behavioral detection. This includes obfuscating
control flow, adding benign API calls, and delaying or
splitting malicious actions across multiple processes.
We also assume the attacker is aware of LLM-based
detection approaches and may attempt to shape the
observable behavior of the application to appear more
benign, although they do not have white-box access to
our model. We do not consider evasion attacks based
on adversarial API-call manipulation, nor attacks that
exploit LLM vulnerabilities such as adversarial prompts
or poisoned inputs.

4. TERMINOLOGY

. Token - A token is the fundamental unit of data
used by language models and serves as a
building block for processing text. Importantly,
one API call does not necessarily correspond to
a single token. For example, the APl call
NtCreateFile may be split into two tokens: Nt and
CreateFile.

. Process - A running instance of an executable
program. A single executable may create
multiple processes, each with its own sequence
of API calls.

. Chunk - A contiguous subset of system calls
from a process. The subset typically has a
limited length (e.g., 512 for the RoBERTa-base
model). Each chunk serves as an individual
training sample.

5. DESIGN

5.1. Overview

To detect application-level malware on Windows, a
detector should monitor the system calls issued by
programs and use those traces as input to a classifier.
This task requires two main steps: 1) collect and
extract sequences of system calls from both benign
software and malicious samples; and 2) determine
whether a trace indicates malware using a pre-trained
classifier. We use large language models as the
classifier. Since general-purpose large language
models are not trained for malware detection, we fine-
tune them on the collected system-call traces so that
they can learn to distinguish malicious behavior from
normal activity. Our design includes the following
components: data collection, data preparation, and
model training. We will elaborate on each of them
below.

5.2. Data Collection

We have collected 114 malware samples and 114
benign samples. Each sample is an executable file that
can be executed on the Windows. The malware
samples were obtained from MalwareBazaar [3], a
platform that provides the latest samples and threat
intelligence. The benign samples were collected from
FOSSHUB [2], NirSoft [5], SourceForge [7], and
Microsoft [4]. As illustrated in Figure 2, the malware
and benign samples are executed in an isolated
sandbox environment. After each execution, the
system is restored to its initial state to ensure a clean
environment. This procedure is repeated until all
samples (both malware and benign) have been tested.
After each run, a JSON report is generated containing
detailed information about the process and the API
calls invoked during the execution.

JSON report

‘ chunk | chunk] ‘ chunk ’ chunk }

Figure 2: Data pipeline for a single executable.

From each JSON report we extract the processes
and their ordered API call names. The sequences are
partitioned into fixed-length JSON chunks, with a partial
overlap between consecutive chunks to preserve
contextual continuity across boundaries. We use a 64
token overlap for 512 and 256 token chunks, dropping
it to a 32 token overlap for 128 token chunks.
Processes with less than 20 calls were dropped to
ensure each sample contains sufficient information for
meaningful classification. Very short behavioral traces
can introduce noise and potentially reduce model
performance. Each chunk is associated with the
following three metadata fields.

. Label - Indicates the class used for supervised
learning: 0 for benign samples and 1 for
malicious samples.

98 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

. Analysis_ID - A unique identifier assigned to
each executable file. Every executable executed
within the sandbox is associated with a distinct
ID, ensuring that each process can be precisely
traced back to its originating executable.

i Process_ID - A unique identifier assigned to
each process generated by an executable during
execution. Since a single executable may have
multiple processes, each process is assigned a
distinct process ID to enable precise tracking.

5.3. Data Preparation

After generating the JSON chunks and adding the
metadata, we performed several preprocessing steps
to prepare the dataset for model training. The main
steps are as follows.

Chunk Aggregation. All generated chunks were
randomly merged into a single JSON Lines (JSONL)
file. A JSONL file stores multiple JSON objects, with
one object per line.This format makes it efficient to
store and process large datasets.

Deduplication. A deduplication step was applied
across the entire JSONL file to remove redundant
entries. This process eliminated duplicate chunks to
ensure that only unique behavioral data were retained
for model training.

Dataset Splitting. The dataset was divided into
training, validation, and testing subsets, using a 60%,
20% and 20% split, respectively. To avoid data
leakage, chunks were grouped by their Analysis_ID
before splitting. This ensures that all chunks originating
from the same application remain within the same
subset.

5.4. Model Training

We fine-tune the model using the AdamW
optimization algorithm, a variant of Adam (Adaptive
Moment Estimation) that decouples weight decay from
gradient updates, leading to better generalization and
training stability. We do not cap or down-sample the
larger class. Instead, during training, we apply a
process-uniform sampler, where each chunk is
sampled with weight w; = 1/|C(p)|, where |C(p)| denotes
the number of chunks in process p. We include a small
class term in the training sampler so that benign and
malware examples are presented at roughly the same
rate each epoch. This approach prevents the majority
class from dominating and improves learning for the

minority class. The re-balancing is applied only during
training.

6. IMPLEMENTATION AND EVALUATION

6.1. Experimental setup

Data collection was performed in CAPEv2 [1], an
open-source sandbox derived from the Cuckoo v1
sandbox. CAPEv2 was run inside an isolated Windows
10 virtual machine. CAPEv2 collects detailed data such
as behavioral logs, file modifications, network traffic
and memory dumps. In this work, we focus on the API
calls and their corresponding processes. To avoid bias,
we also removed processes containing fewer than 20
API calls and duplicate processes. A summary of the
collected data is presented in Table 1.

Table 1: Number of Processes before and after Filtering
Class Original <20 calls Duplicate Final
Malware 405 30 9 366
Benign 145 7 3 135

The model used for training and detection is
RoBERTabase [6], a pretrained Transformer-based
language model originally released in 2019. It was fine-
tuned on our training dataset using the Hugging Face
Transformers library and PyTorch within a Google
Colab environment equipped with an NVIDIA T4 GPU.
The parameters we used to train our model are shown
in Table 2.

Table 2: Training Parameters used for Fine-Tuning the
RoBERTa-Base Model

Parameter Value
Learning rate 1le-5
Weight decay 0.01

Batch size 4

Gradient accumulation 4
Max training epochs 18

We applied early stopping using the validation F1
score with a patience of five epochs. Training was

Large Language Model-Based Malware Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 99

stopped when the F1 score did not improve for five
consecutive epochs, and the model was restored to the
checkpoint with the highest F1. In our experiments,
training typically completed in about twelve epochs. We
also used a cosine learning rate schedule with a warm-
up ratio of 10%, and a fixed random seed was applied
to ensure reproducibility.

6.2. Metrics

To evaluate the effectiveness of our proposed
detection model, we first define four key terms: true
positive (TP), false negative (FN), false positive (FP),
and true negative (TN). Based on these definitions, we
leverage several widely used classification metrics,
including accuracy (Acc), precision, recall, F1 score,
false positive rate (FPR), and false negative rate
(FNR). The definitions of these metrics are as follows:

Accuracy (Acc): The ratio of correctly classified
samples to the total number of samples.
TP+ TN

Acc =
TP+TN+FP+ FN

Precision: The ratio of correctly predicted positive
samples to all predicted positives.
TP

Precision = ————
TP + FP

Recall: The ratio of correctly predicted positive samples
to all actual positives.
TP

Recall = ———
TP+ FN

F1 Score (F1): The harmonic mean of precision and
recall, reflecting a balance between them.

2X Precision X Recall

Precision + Recall

False Positive Rate (FPR): The ratio of negative
samples incorrectly predicted as positive.

FP

FPR= ———
FP+TN

False Negative Rate (FNR): The ratio of positive
samples incorrectly predicted as negative.

FNR = ——
FN+TP

6.3. Behavioral Analysis

As shown in Table 3, distinct behavioral patterns
can be observed between malware and benign

software. One significant observation is that malware
has fewer API calls per process (2,910) compared to
benign software (5,234). The main reason is that
malware usually executes shorter and more focused
sequences of API calls, often designed to achieve
specific malicious goals such as privilege escalation or
file modification. In contrast, benign software tends to
perform more diverse and long-running operations,
including user interactions, background activities, and
complex system functions. For example, malware may
quickly encrypt files using a short sequence of file
access and encryption APIs, while a word processor
performs many different operations such as editing and
saving documents.

Table 3 also reveals differences beyond API-call
counts. Malware processes generate substantially
fewer tokens overall (13,132 on average) compared to
benign processes (26,669). This reduced volume
suggests that malware tends to operate in compact
execution bursts, often minimizing unnecessary system
interactions to reduce detection surface. Benign
software, by comparison, produces longer and more
heterogeneous execution traces because it performs
multiple functions, maintains state, and interacts with
various subsystems over time.

Table 3: Tokens and API Calls by Class

Total Avg Avg

Class tokens tokens/Proc calls/Proc
Malware 4,806,313 13,132 2,910
Benign 3,600,180 26,669 5,234

6.4. Evaluation

6.4.1. Model Performance Under Different Chunk
Sizes

After training, we calibrate probabilities using
temperature scaling on the validation set in order to
minimize negative log-likelihood (NLL).

M
1
NLLpingry = _MZ [yilog pi + (1 —ylog (1 —p;)]

i=1

We then sweep decision thresholds on the
validation set in order to maximize F1 for each
aggregation. The chosen temperature and thresholds
are applied once to the test set before evaluation. The
trained model is employed to evaluate the malware

100 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

detection performance on the testing dataset. To
investigate the effect of chunk length on the detection
rate, we vary it to 512, 256, and 128, respectively. 512
corresponds to the maximum sequence length used
during the pre-training of RoBERTa-base [6]. Chunk
sizes of 256 and 128 tokens are also commonly used
when fine-tuning Transformer-based models [50, 51].
The model outputs a malware probability for each
individual chunk. We will refer to each of these as a
chunk-level probability. To produce a single process-
level probability the corresponding chunk-level
probabilities are aggregated together using three
methods:

Prob_mean: the average of all chunk probabilities.

N
1
Prob_mean :EZ pi

i=1

Prob_p95: the 95th percentile of the chunk
probabilities, which emphasizes strong evidence while
mitigating noise.

Prob_p95 = Percentile o5({p1, P2, -, Pn})

Prob_max: the maximum chunk probability, capturing
the strongest signal but making the prediction more
sensitive to outliers.

Prob_max = maxp;
1=<i=N

The same aggregation methods are then used to
produce an application-level probability, where all
process-level probabilities corresponding to that
application are combined to yield a final prediction.

The results are shown in Table 4. We can detect
that, at the application level, prob_mean with the
default 512 token chunks remains the most balanced
and deployment ready aggregation method, achieving
93% accuracy, 96% precision, 92% recall, 0.94 F1, 5%
FPR, and 8% FNR. When the chunk size is reduced to
256 tokens, prob_p95 improves markedly—its false
positive rate drops from 63% to 36% while maintaining
perfect recall, demonstrating better precision-recall
tradeoffs. At 128 tokens, performance for prob_mean
closely mirrors that of the 512-token configuration, with
only marginal differences across all metrics, suggesting
that the model's decision stability is largely invariant to
smaller chunk sizes. Prob_max remains nearly
unchanged across all window sizes, reinforcing that
chunk length has minimal influence on its strongest
activation signals. Overall, prob_mean (512) and

prob_mean (128) show consistent, reliable
generalization, while prob_p95 (256) continues to offer
the best high recall configuration.

6.4.2. Confusion Matrices at Tuned Thresholds

A confusion matrix is a table used to evaluate the
performance of a classification model by comparing its
predictions to the true labels. This provides deeper
insight into how the model behaves, beyond summary
metrics such as accuracy or F1. Tables 5, 6, and 7
below show the respective confusion matrix at the
application level using a 512 chunk size for
prob_mean, prob_p95 and prob_max. From the results,
the confusion matrices show strong separability
between malware and benign applications. prob_mean
offers the most balanced performance, with very few
false positives and false negatives. In contrast,
prob_p95 and prob_max produce higher true-positive
rates but also more false positives, indicating a
tendency to over-predict malware.

6.4.3. Receiver Operating Characteristic Curve and
Area Under Curve

The Receiver Operating Characteristic (ROC) curve
provides a graphical summary of a model's ability to
distinguish between classes across all possible
decision thresholds. The Area Under the Curve (AUC)
corresponds to the probability that the model assigns a
higher risk score to a randomly selected malware
sample than to a randomly selected benign sample.

We plot the ROC curves for application-level
classification using the prob_mean, prob_p95, and
prob_max aggregation methods. The corresponding
results are shown in Figures 3, 4, and 5, respectively.
The results show that prob_mean achieves an AUC of
0.989, indicating excellent separability between
malware and benign applications. In other words, the
model assigns a higher risk score to a randomly
chosen malware application than to a randomly chosen
benign application in 98.9% of cases. Both prob_p95
and prob_max (Figures 4 and 5) achieve an AUC of
0.949, demonstrating strong separability but
consistently lower performance compared to
prob_mean. These findings reinforce that prob_mean
provides the most stable and deployment-ready
aggregation method.

6.4.4. Deployment Feasibility

We also evaluated the runtime performance of the
detector . With a chunk size of 512, the model achieves
a mean per-chunk latency of 2.82 ms, a throughput of

Large Language Model-Based Malware Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

101

Table 4: Test Performance at Tuned Decision Thresholds for Three Chunk Sizes (512, 256, and 128 Tokens)

Level / Acc Precision Recall F1 FPR FNR Threshold
Chunk size = 512
Process Level
prob_mean 0.94 0.92 1.00 0.96 0.26 0.00 0.5
prob_p95 0.84 0.83 1.00 0.91 0.65 0.00 0.55
prob_max 0.82 0.81 1.00 0.89 0.74 0.00 0.7
Application Level
prob_mean 0.93 0.96 0.92 0.94 0.05 0.08 0.8
prob_p95 0.70 0.63 1.00 0.77 0.63 0.00 0.55
prob_max 0.65 0.60 1.00 0.75 0.73 0.00 0.5
Chunk size = 256
Process Level
prob_mean 0.91 0.94 0.94 0.94 0.17 0.06 0.7
prob_p95 0.90 0.89 1.00 0.94 0.39 0.00 0.8
prob_max 0.82 0.81 1.00 0.89 0.74 0.00 0.9
Application Level
prob_mean 0.91 0.95 0.86 0.91 0.05 0.13 0.75
prob_p95 0.83 0.75 1.00 0.86 0.36 0.00 0.9
prob_max 0.65 0.60 1.00 0.75 0.73 0.00 0.9
Chunk size = 128
Process Level
prob_mean 0.95 0.96 0.97 0.97 0.13 0.03 0.6
prob_p95 0.90 0.90 0.99 0.94 0.34 0.01 0.85
prob_max 0.86 0.87 0.97 0.91 0.48 0.03 0.9
Application Level
prob_mean 0.93 0.92 0.96 0.94 0.09 0.04 0.65
prob_p95 0.93 0.89 1.00 0.94 0.14 0.00 0.9
prob_max 0.78 0.71 1.00 0.83 0.45 0.00 0.9

102 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

Table 5: Confusion

Matrix for

prob_mean at the

Application Level (512 Chunk Size)

Actual Malware

Actual Benign

Predicted Malware 22 1
Predicted Benign 2 21
Table 6: Confusion Matrix for prob_p95 at the

Application Level (512 Chunk Size)

Actual Malware

Actual Benign

Predicted Malware 24 14
Predicted Benign 0 8
Table 7: Confusion Matrix for prob_max at the

Application Level (512 Chunk Size)

Actual Malware

Actual Benign

Predicted Malware

24

Predicted Benign

ROC Curve - Application level (prob_mean)

1.0 A
0.8 1

0.6 1

0.4 4

True Positive Rate

0.2 4

0.0 1

—— prob_mean (AUC = 0.989)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3: ROC curve for application-level classification using
the prob_mean aggregation method (512 chunk size).

355.1 chunks per second, and uses about 1.6 GB of
memory during inference. On average, each process
generates 35.36 chunks, and each application

generates 72.26 chunks. This leads to an estimated
end-to-end detection time of about 100 ms per process
and about 204 ms per application. In both cases, the
full classification completes in well under 250 ms,
which is suitable for near-real-time use.

ROC Curve - Application level (prob_p95)

|

1.0 A

0.8 4

0.6 -

0.4

True Positive Rate

0.2 1

—— prob_p95 (AUC = 0.949)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: ROC curve for application-level classification using
the prob_p95 aggregation method (512 chunk size).

ROC Curve - Application level (prob_max)

1.0 A

0.8 1

0.6 4

0.4 4

True Positive Rate

0.2 1

0.0 —— prob_max (AUC = 0.949)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5: ROC curve for application-level classification using
the prob_max aggregation method (512 chunk size).

7. DISCUSSION

7.1. Limitation on Detection Scope

One limitation of our work is that it focuses solely on
detecting malware at the application layer. Our
approach analyzes system calls and behavioral
patterns generated by user-level processes, enabling
effective identification of malicious activities within
applications. However, it does not address threats that

Large Language Model-Based Malware Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 103

compromise the operating system itself, such as
kernel-level rootkits [22] or other low-level attacks that
can bypass user space monitoring. Defending against
such OS-level malware requires additional
mechanisms, such as hypervisor based monitoring [9],
or hardware-assisted security techniques [15], which
are beyond the scope of this work.

7.2. Real-Time Detection Constraint

Although the proposed model effectively detects
malicious behaviors from system call sequences, the
inference process of large language models can be
computationally intensive. This may introduce
noticeable latency when analyzing continuous streams
of system calls in real-world environments. As a result,
deploying the model for real-time malware detection
becomes challenging, especially on systems with
limited computing resources. Future work could explore
lightweight model architectures or hardware
acceleration techniques to reduce overhead.

7.3. Platform Dependency

Our model and data collection process are
specifically designed for the Windows operating
system, leveraging system calls and behaviors unique
to this environment. As a result, applying the same
model to other platforms, such as Linux, macOS, or
Android, is non-trivial due to differences in system call
interfaces. Future work may focus on integrating cross-
platform datasets to enhance the model's
generalization and adaptability.

7.4. Bias from Excluding Short Malware Traces

We removed duplicate processes and processes
containing fewer than 20 API calls to ensure each
sample provides sufficient and meaningful behavioral
data. However doing so may introduce bias by under-
representing short malware traces. Such traces, while
short, may be relevant for security and by excluding
these the model becomes biased towards longer
behavioral patterns. Future work should incorporate
these short traces to more accurately reflect real world
data.

7.5. Dataset limitations

A key limitation of this work is the relatively small
dataset, consisting of 114 malware and 114 benign
executables. Although each executable generates
multiple processes and system-call chunks, the overall
behavioral diversity remains limited, which may restrict

the model’s ability to generalize to broader real-world
malware families. The small dataset size also
increases the risk of overfitting, particularly when fine-
tuning large language models that may memorize
recurring behavioral patterns rather than learning
robust semantic distinctions. Expanding the dataset to
include more diverse malware families is an important
direction for future work to enhance both robustness
and generalization.

7.6. Forensic and Evidentiary Implications

Our malware-detection framework also carries
meaningful implications for digital forensics and legal
proceedings. The system call traces and model-
generated classification logs can serve as reproducible
behavioral records that support incident reconstruction,
attribution, and timeline analysis during investigations.
Because these logs document how an application
behaved at the system call level, they can be
preserved as digital evidence and referenced in legal or
organizational review processes. The model's outputs
can also be audited because the preprocessing steps
and decision rules are fixed and easy to check. Basic
explainability further shows which behaviors led to a
decision, which helps improve trust and supports the
use of these results as evidence.

7.7. High FPR for prob_p95 and prob_max

Both aggregations are sensitive to spikes or bursts
of suspicious behavior, leading to an increase in falsely
classified benign files. However as a trade off they
achieve perfect or near perfect recall at all chunk sizes.
Due to this high sensitivity prob_mean is recommended
for deployment, achieving better stability while
maintaining accuracy, precision and recall.

8. RELATED WORK

8.1. Signature-Based Malware Detection

A signature is a distinctive feature of malware that
encapsulates its structural characteristics and uniquely
identifies each sample. Signature-based detection is
one of the most widely adopted techniques in
commercial antivirus systems, where predefined
signatures are used to recognize and block known
malware. F. Zolkipli and Jantan designed a malware
detection framework that combines signature-based
methods, a genetic algorithm, and an automatic
signature generator [44]. Tang et al. developed a
bioinformatics approach that aligns sequences,
removes noise, and converts results into simplified

104 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

regular-expression signatures compatible with existing
intrusion detection systems [39]. Borojerdi and Abadi
introduced MalHunter, a detection system that uses
sequence clustering and alignment to automatically
generate behavior-based signatures for polymorphic
malware [13].

8.2. Behavior-Based Malware Detection

The behavior-based malware detection approach
monitors program activities using analysis tools and
determines whether a program exhibits malicious or
benign behavior. Fukushima et al. [20] proposed a
behavior-based detection approach capable of
identifying both unknown and encrypted malware on
Windows systems. Christodorescu et al. [16] proposed
a semantics-aware malware detection approach,
observing that certain malicious behaviors consistently
appear across all variants of a malware family. A
supervised machine learning model was proposed in
[30], employing a kernel-based SVM with weighting
measures that calculate the frequency of each library
call to detect Mac OS X malware.

8.3. Heuristic-Based Malware Detection

Heuristic-based malware detection is a complex
approach that leverages prior knowledge, rules, and
machine learning techniques to identify malicious
software. Arnold and Tesauro proposed an
automatically generated heuristic framework for
detecting Win32 viruses [8]. Their approach builds
multiple neural network classifiers capable of
identifying previously unknown Win32 malware.
Yanfang et al. [42] proposed the Intelligent Malware
Detection System (IMDS), which employs objective-
oriented association (OOA) mining based on Windows
API call analysis. Naval et al. [28] proposed a dynamic
malware detection system that captures system calls
and constructs a graph to identify semantically relevant
paths among them.

8.4. Transformer-Based and LLM-based Malware
Detection

Recent advances in transformer architectures have
inspired a new class of malware detection techniques
that reduce dependence on handcrafted features. Raff
et al. [31] introduced MalConv, a deep learning
architecture capable of processing raw executable
bytes to detect malware without manual feature
engineering. Feng et al. proposed LLM-MalDetect [46],
which leverages a fine-tuned large language model to
integrate permissions, APl calls, and string-based

semantic features extracted from Android APKs to,
achieving higher accuracy. Their results demonstrate
that LLMs can capture richer behavioral and contextual
information than traditional ML/DL approaches. Zhou et
al. [47] proposed SRDC, a semantics-based
ransomware detection and classification framework
that combines internal feature semantics with external
LLM-generated knowledge to improve robustness and
generalization. Their results show that SRDC
significantly outperforms traditional ML/DL methods.

8.5. Other Malware Detection Technologies

Other malware detection technologies include
model checking-based malware detection [11, 23, 25],
deep learning-based malware detection [12, 18, 43],
and cloud-based malware detection [38, 41].

8.6. Forensic and Regulatory Perspectives on
Automated Detection

Beyond technical detection methods, prior work has
highlighted the forensic and regulatory importance of
automated malware-analysis systems. Behavioral
artifacts such as system-call traces, audit logs, and
execution traces provide reproducible digital evidence
that supports incident reconstruction and attribution in
forensic investigations [48]. Likewise, regulatory
frameworks such as NIST SP 800-53 [49] emphasize
the need for transparent, auditable, and timely
detection mechanisms to meet incident-response
obligations. These works demonstrate that automated
detection systems play a significant role not only in
identifying malicious behavior but also in ensuring
evidentiary integrity and regulatory compliance.

9. CONCLUSION

This paper presents a framework for binary
classification between malicious and benign Windows
applications. A pretrained RoBERTa model was fine-
tuned using a structured dataset of API call traces.
Among the tested aggregation strategies, prob_mean
demonstrated the most reliable and stable performance
across all chunk sizes, with the default 512-token
configuration achieving 92% recall and a 0.94 F 1 at
the application level. The 128 -token configuration
showed nearly identical results, indicating strong
consistency and robustness. Prob_p95 remained the
second most promising method, particularly at 256
tokens, where it achieved perfect recall (1.00) with
improved precision compared to larger chunks. Overall,
the results show that the proposed framework

Large Language Model-Based Malware Detection

Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1 105

effectively distinguishes malware from benign behavior
on Windows systems and remains stable under varying
input sizes, making it well-suited for real-world
deployment.

Future work can expand the system in several
ways. Adding stronger explainability would show which
behaviors shape the model’'s decisions. Connecting the
detector with forensic tools could improve incident
reconstruction and evidence handling. It will also be
important to test the model against adversarial
behavior. Additionally, aligning the system with policy
and audit requirements can support deployment in real
environments.

REFERENCES

[1] Cape sandbox book. https://capev2.readthedocs.io/en/latest/
installation/host/installation.html

[2] Fosshub. https://www.fosshub.com/categories.html.

[3] Malwarebazaar. https://bazaar.abuse.ch/.

[4] Microsoft sysinternals suite. https://learn.microsoft.com/en-
us/sysint ernals/downloads/sysinternals-suite

[5] Nirsoft. https://www.nirsoft.net/.

[6] Liu, Yinhan, et al. "Roberta: A robustly optimized bert
pretraining approach." arXiv preprint arXiv:1907.11692

(2019).
[7] Sourceforge. https://sourceforge.net/.
[8] William Arnold and Gerald Tesauro. Automatically generated

win32 heuristic virus detection. In Proceedings of the 2000
international virus bulletin conference, 2000.

[9] Erick Bauman, Gbadebo Ayoade, and Zhigiang Lin. A survey
on hypervisor-based monitoring: approaches, applications,
and evolutions. ACM Computing Surveys (CSUR), 48(1):1-
33, 2015.
https://doi.org/10.1145/2775111

[10] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. Scalable, behavior-
based malware clustering. In NDSS, volume 9, pages 8-11,
2009.

[11] Philippe Beaucamps, lIsabelle Gnaedig, and Jean-Yves
Marion. Abstraction-based malware analysis using rewriting
and model checking. In European Symposium on Research
in Computer Security, pages 806-823. Springer, 2012.
https://doi.org/10.1007/978-3-642-33167-1_46

[12] Yoshua Bengio et al. Learning deep architectures for ai.
Foundations and trends® in Machine Learning, 2(1):1-127,
2009.
https://doi.org/10.1561/2200000006

[13] Haniye Razeghi Borojerdi and Mahdi Abadi. Malhunter:
Automatic generation of multiple behavioral signatures for
polymorphic malware detection. In ICCKE 2013, pages 430-
436. IEEE, 2013.
https://doi.org/10.1109/ICCKE.2013.6682867

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are fewshot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[15] Niusen Chen, Wen Xie, and Bo Chen. Combating the os-
level malware in mobile devices by leveraging isolation and
steganography. In Applied Cryptography and Network
Security Workshops, 2021.
https://doi.org/10.1007/978-3-030-81645-2_23

[16]

7]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn
Song, and Randal E Bryant. Semantics-aware malware
detection. In 2005 IEEE symposium on security and privacy
(S&P'05), pages 32-46. IEEE, 2005.
https://doi.org/10.1109/SP.2005.20

Malware statistics. https://controld.com/blog/malware-
statistics-trends/

George E Dahl, Jack W Stokes, Li Deng, and Dong Yu.
Large-scale malware classification using random projections
and neural networks. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 3422-
3426. |IEEE, 2013.
https://doi.org/10.1109/ICASSP.2013.6638293

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of
the 2019 conference of the North American chapter of the
association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-
4186, 2019.

https://doi.org/10.18653/v1/N19-1423

Yoshiro Fukushima, Akihiro Sakai, Yoshiaki Hori, and Kouichi
Sakurai. A behavior based malware detection scheme for
avoiding false positive. In 2010 6th IEEE workshop on secure
network protocols, pages 79-84. IEEE, 2010.
https://doi.org/10.1109/NPSEC.2010.5634444

William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and
Xin Li. D14md: A deep learning framework for intelligent
malware detection. In Proceedings of the International
Conference on Data Science (ICDATA), page 61. The
Steering Committee of The World Congress in Computer
Science, Computer ..., 2016.

Greg Hoglund and James Butler. Rootkits: subverting the
Windows kernel. Addison-Wesley Professional, 2006.

Andreas Holzer, Johannes Kinder, and Helmut Veith. Using
verification technology to specify and detect malware. In
International Conference on Computer Aided Systems
Theory, pages 497-504. Springer, 2007.
https://doi.org/10.1007/978-3-540-75867-9_63

Kozak, Matous, et al. "Updating Windows malware detectors:
Balancing robustness and regression against adversarial
EXEmples." Computers & Security 155 (2025): 104466.
https://doi.org/10.1016/j.cose.2025.104466

Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart,
and Helmut Veith. Proactive detection of computer worms
using model checking. IEEE transactions on dependable and
secure computing, 7(4):424-438, 2008.
https://doi.org/10.1109/TDSC.2008.74

Jeremy Z Kolter and Marcus A Maloof. Learning to detect
malicious executables in the wild. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 470-478, 2004.
https://doi.org/10.1145/1014052.1014105

Infosecurity Magazine. Daily malicious files soar 3% in 2023.
https: /Iwww.infosecurity-magazine.com/news/daily-
malicious-files-soar-3-2023/

Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj
Singh Gaur, and Mauro Conti. Employing program semantics
for malware detection. IEEE Transactions on Information
Forensics and Security, 10(12):2591-2604, 2015.
https://doi.org/10.1109/TIFS.2015.2469253

Joshua Ofoeda, Richard Boateng, and John Effah.
Application programming interface (api) research: A review of
the past to inform the future. International Journal of
Enterprise Information Systems (IJEIS), 15(3):76-95, 2019.
https://doi.org/10.4018/IJEIS.2019070105

Hamed Haddad Pajouh, Ali Dehghantanha, Raouf Khayami,
and KimKwang Raymond Choo. Intelligent os x malware

106 Journal of Cybersecurity, Digital Forensics, and Jurisprudence, 2025, Vol. 1

Clark and Chen

threat detection with code inspection. Journal of Computer [41]
Virology and Hacking Techniques, 14(3):213-223, 2018.
https://doi.org/10.1007/s11416-017-0307-5

[31] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, [42]
Bryan Catanzaro, and Charles Nicholas. Malware detection
by eating a whole exe. arXiv preprint arXiv:1710.09435,
2017.

[32] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo
G Bringas. Opcode sequences as representation of [43]
executables for data-mining-based unknown malware
detection. information Sciences, 231:64-82, 2013.
https://doi.org/10.1016/.ins.2011.08.020

[33] Joshua Saxe and Konstantin Berlin. Deep neural network
based malware detection using two dimensional binary [44]
program features. In 2015 10th international conference on
malicious and unwanted software (MALWARE), pages 11-20.
IEEE, 2015.
https://doi.org/10.1109/MALWARE.2015.7413680

[34] M Zubair Shafig, S Momina Tabish, Fauzan Mirza, and
Muddassar Farooq. Pe-miner: Mining structural information [45]
to detect malicious executables in realtime. In International
workshop on recent advances in intrusion detection, pages
121-141. Springer, 2009.
https://doi.org/10.1007/978-3-642-04342-0_7 [46]

[35] PV Shijo and AJPCS Salim. Integrated static and dynamic
analysis for malware detection. Procedia Computer Science,
46:804-811, 2015.
https://doi.org/10.1016/j.procs.2015.02.149 [47]

[36] Spacelift. Malware statistics 2024. https://spacelift.io/blog/
malwar e-statistics

[37] StatCounter. Desktop operating system market share
worldwide. https://gs.statcounter.com/os-market-share/
desktop/worldwide [48]

[38] Hao Sun, Xiaofeng Wang, Rajkumar Buyya, and Jinshu Su.
Cloudeyes: Cloud-based malware detection with reversible
sketch for resource-constrained internet of things (iot) [49]
devices. Software: Practice and Experience, 47(3):421-441,
2017. (50]
https://doi.org/10.1002/spe.2420

[39] Yong Tang, Bin Xiao, and Xicheng Lu. Using a bioinformatics
approach to generate accurate exploit-based signatures for
polymorphic worms. computers & security, 28(8):827-842,

2009. (51]
https://doi.org/10.1016/j.cose.2009.06.003

[40] S Typel and G Baur. Theory of the trojan-horse method.
Annals of physics, 305(2):228-265, 2003.
https://doi.org/10.1016/S0003-4916(03)00060-5

Ram Mahesh Yadav. Effective analysis of malware detection
in cloud computing. Computers & Security, 83:14-21, 2019.
https://doi.org/10.1016/j.cose.2018.12.005

Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and
Qingshan Jiang. An intelligent pe-malware detection system
based on association mining. Journal in computer virology,
4(4):323-334, 2008.
https://doi.org/10.1007/s11416-008-0082-4

Zhenlong Yuan, Yonggiang Lu, Zhaoguo Wang, and Yibo
Xue. Droidsec: deep learning in android malware detection.
In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 371-372, 2014.
https://doi.org/10.1145/2619239.2631434

Mohamad Fadli Zolkipli and Aman Jantan. A framework for
malware detection using combination technique and
signature generation. In Computer Research and
Development, International Conference on, pages 196-199.
IEEE Computer Society, 2010.
https://doi.org/10.1109/ICCRD.2010.25

Pearce, Hammond, et al. "Examining zero-shot vulnerability
repair with large language models." 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 2023.
https://doi.org/10.1109/SP46215.2023.10179420

Feng, Ruirui, et al. "LLM-MalDetect: A Large Language
Model-Based Method for Android Malware Detection." IEEE
Access (2025).
https://doi.org/10.1109/ACCESS.2025.3565526

Zhou, Ce, et al. "SRDC: Semantics-based Ransomware
Detection and Classification with LLM-assisted Pre-training."
Proceedings of the AAAI Conference on Atrtificial Intelligence.
Vol. 39. No. 27. 2025.
https://doi.org/10.1609/aaai.v39i27.35080

Casey, Eoghan. Digital evidence and computer crime:
Forensic science, computers, and the internet. Academic
press, 2011.

NIST SP 800-53.
upd1/final

Chen, Aokun, et al. "Contextualized medication information
extraction using transformer-based deep learning
architectures." Journal of biomedical informatics 142 (2023):
104370.

https://doi.org/10.1016/}.jbi.2023.104370

TensorFlow. (2023). Fine-tune BERT on a downstream task.
Retrieved from https://www.tensorflow.org/tfmodels/
nlp/fine_tune_bert

https://csrc.nist.gov/pubs/sp/800/53/r5/

Received on 27-10-2025

https://doi.org/10.65879/3070-5789.2025.01.09

© 2025 Clark and Chen.

This is an open access article licensed under the

Accepted on 29-11-2025

terms

Published on 17-12-2025

of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium,

provided the work is properly cited.

