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Abstract: The increasing global adoption of electronic tax systems inherently introduces significant privacy and security
risks, primarily stemming from the reliance on cloud infrastructure for storing and processing highly sensitive financial
data. Conventional digital tax platforms typically necessitate unrestricted access to taxpayers’ raw data, thereby
rendering these systems acutely vulnerable to sophisticated cyberattacks, large-scale data breaches, and malicious
insider threats. This exposure fundamentally compromises the confidentiality of personal financial records and
demonstrably contributes to the erosion of public trust in governmental digital services. To address these challenges,
we introduce a privacy-preserving framework specifically engineered for secure tax calculation. Our technical solution is
founded on the strategic integration of Fully Homomorphic Encryption (FHE), specifically employing the Cheon-Kim-Kim-
Song (CKKS) scheme. The CKKS scheme is uniquely suited to enabling approximate arithmetic on encrypted data,
which facilitates the secure evaluation of complex, real-valued inputs, including income figures, allowable deductions,
and financial risk metrics. We implemented an encrypted tax pipeline utilizing the CKKS scheme. This pipeline rigorously
supports the necessary real-valued operations and ensures the secure computation of core tax outcomes, including the
exact tax owed, potential refund amounts, and predictive fraud assessment, with inherent implications for compliant
auditing and maintaining evidentiary integrity. Experimental results conclusively demonstrate that our proposed system
maintains both high utility and accuracy in its calculations while simultaneously guaranteeing data confidentiality. This
approach establishes a practical foundation for building secure, transparent, and trustworthy digital tax infrastructures.
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1. INTRODUCTION

Taxation has been a societal reality for millennia,
with origins dating back to the three oldest known
civilizations: Mesopotamia (c. 4000-3000 BCE) [1-3],
Egypt (c. 2700-2200 BCE) [4, 5], and the Indus Valley
(c. 2500-1700 BCE). In these foundational systems,
individual obligations to the governing authority were
typically fulfiled not through monetary payments but
through contributions of livestock, grain, or labor. While
these ancient societies maintained mechanisms for
revenue collection for the ruler, a truly formalized and
comprehensive tax system had not yet been fully
developed. The systematization of taxation principles
is traced mainly to the period of Kautilya’s Arthashastra
(350-275 BCE) [6]. Since then, the fundamental
purpose of taxes—the collective financial contribution
toward public services—has remained constant, but the
methods of collection and administration have
undergone dramatic transformation, progressing from
handwritten ledgers to contemporary digital filing
systems driven by successive technological shifts.

In recent decades, the widespread advent of the
internet has fundamentally revolutionized global
financial transactions and information exchange. The
prevalent client-server model, which forms the
architectural backbone of the World Wide Web,
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facilitates communication where clients (such as
personal computers or mobile devices) interact with
centralized servers that host services and store data.
Tax preparation and filing processes have migrated
mainly to the online domain, with commercial
applications becoming industry standards for
simplifying the user experience. These digital services
enable individuals to upload financial documents, link
external bank accounts, and automatically populate
statutory tax forms online. However, while user
convenience has improved substantially, the attack
surface has concurrently expanded. As sensitive
personal and financial data are perpetually transmitted
and stored across intricate, interconnected systems,
the potential for interception, unauthorized mani-
pulation, or malicious access escalates significantly.

The risks inherent in online tax filing are not merely
theoretical; they represent real, pressing, and growing
threats. Cyberattacks specifically targeting financial
and tax-related data systems have historically resulted
in some of the most significant data security breaches
recorded.

The 2017 breach of Equifax, one of the three major
credit reporting agencies, exposed the personal data
of an estimated 147 million U.S. consumers [7]. The
compromised data, which was subsequently exploited
for tax fraud, was extensive, encompassing names,
Social Security numbers, dates of birth, addresses,
and in some cases, driver's license and credit card
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information. The financial impact of this incident was
substantial, costing Equifax over $1.4 billion in legal
fees and related expenses [8].

The extensive exposure of Social Security numbers,
in particular, created a severe and enduring risk for tax-
related identity theft and fraudulent refund claims.
Possessing this level of authenticated personal data
allows malicious actors to file illegitimate tax returns or
gain unauthorized access to existing taxpayer accounts
with alarming success rates.

A more recent security incident in May 2024,
involving the luxury retailer Neiman Marcus, highlighted
the systemic risks associated with relying on third-party
cloud providers [9].

Neiman Marcus was among the more than 165
organizations impacted by the widespread Snowflake
cloud data breach, confirming the attack after hackers
attempted to sell the company’s compromised
database [10]. Regulatory documents filed in Maine and
Vermont confirmed that the breach affected 64,472
individuals, exposing their names, contact information,
dates of birth, transaction histories, and fragments of
sensitive data, including Social Security and credit card
numbers. Furthermore, the perpetrators claimed
possession of over 30 million email addresses and 70
million transaction records. While this was not a direct
attack on governmental tax infrastructure, the exposed
data is precisely the type that cybercriminals routinely
repurpose to execute sophisticated tax fraud, including
opening fraudulent tax accounts, deceiving human
resources into issuing W-2 forms, or impersonating
individuals during tax season. The financial
repercussions of the incident resulted in a $3,500,000
class action settlement reached against The Neiman
Marcus Group LLC [11].

A significant breach directly compromising tax
records occurred in 2015 when unauthorized actors
exploited the Internal Revenue Service’s (“IRS”) “Get
Transcript” service. This online feature, designed to
allow users to view and download their past tax
records, suffered from weak authentication protocols,
rendering it an accessible target and utilizing previously
stolen personal identifiers—such as Social Security
numbers, dates of birth, and addresses—criminals
successfully bypassed security mechanisms to gain
unauthorized access to an estimated 334,000 taxpayer
accounts [12]. The breach, which occurred between
February and mid-May, exposed sensitive records
containing past tax filings, income sources, and refund

histories. The fraudulent activity involved the
subsequent submission of fake tax returns, leading to
estimated losses of up to $50 million in fraudulent
refunds before the service was temporarily shut down
[13]. This incident highlights how inadequate security
mechanisms can severely compromise even officially
sanctioned government systems.

The ramifications of these extensive attacks are
profound and widespread. Millions of individuals have
had their tax-relevant information exposed, allowing
criminals to successfully impersonate taxpayers, illicitly
redirect refunds, and inject significant instability into the
national tax system. For governmental agencies, these
breaches translate to substantial revenue loss, severely
damaged public credibility, and a rapidly increasing
administrative burden from processing fraud claims. For
individuals, these incidents represent a grave violation
of privacy, immediate financial insecurity, and the
potential for long-term identity theft risks.

Despite the existence of current encryption
measures, the overwhelming majority of existing tax
systems still require user data to be decrypted
immediately before it can be processed. This
obligatory decryption creates a critical vulnerability at
the precise moment computations are performed. The
escalating use of electronic tax systems worldwide
exposes a significant vulnerability: the need to decrypt
highly sensitive financial records for processing,
which opens the door to cyberattacks and data
breaches. To address this systemic risk, we propose
a novel cryptographic framework that leverages Fully
Homomorphic Encryption (FHE). FHE is an advanced
cryptographic  method that uniquely enables
computations to be performed on encrypted data
without ever requiring decryption. FHE ensures that
data remains strictly confidential across every stage of
processing, from initial submission to final calculation
and potential audit.

Specifically, we employ the Cheon-Kim-Kim-Song
(CKKS) scheme, which is optimized for approximate
arithmetic on encrypted, real-valued financial data. This
FHE-CKKS foundation offers a fundamental shift in
data security. It enables taxpayers to submit their
financial data in a strictly encrypted form, allowing the
tax system to perform all necessary computations
(such as calculating tax owed or refunds) directly on
the ciphertexts. The raw data is never decrypted at any
stage of processing, ensuring end-to-end confidentiality
from submission through calculation and audit. This
model is crucial for legal compliance by
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cryptographically enforcing data sovereignty and
eliminating compliance risks associated with exposing
sensitive information across borders. Furthermore, for
forensic  investigation, the FHE-CKKS design
enables tax authorities to execute complex analytical
workflows and conduct comprehensive, zero-trust
audits directly on encrypted data, thereby guaranteeing
evidentiary integrity without requiring access to private
taxpayer information.

While existing academic and industry work has
explored the application of privacy-preserving
technologies in sectors such as healthcare and finance,
few dedicated efforts have explicitly focused on FHE in
the complex domain of taxation. Furthermore,
alternative solutions, such as existing secure multiparty
computation or zero-knowledge proof systems, currently
suffer from prohibitive performance or complexity
constraints that preclude their practical scalability for
millions of taxpayers.

Our specialized approach directly addresses both
efficiency and usability by tailoring FHE schemes to the
specific structure and arithmetic demands of tax
computations, enabling practical deployment without
compromising performance or the user experience.

2. BACKGROUND

The rigorous analysis of sensitive financial data,
particularly records relating to taxation, necessitates
the implementation of robust security mechanisms.
These measures are essential to ensuring the
fundamental preservation of individual data privacy
while  simultaneously facilitating the essential
computational and analytical operations required by
government agencies or third-party auditors.
Conventional data processing methodologies often
require that the data be converted into its plaintext,
or unencrypted, form. This inherently introduces a
singular and critical point of vulnerability within the data
lifecycle, exposing the information to potential breaches
or unauthorized access during processing.

This work is dedicated to addressing this inherent
challenge through the strategic application of advanced
cryptographic primitives. Specifically, the research
leverages Fully Homomorphic Encryption (FHE), a
specialized scheme known as the CKKS scheme.

These cutting-edge cryptographic tools are
meticulously engineered to overcome the limitations of
traditional  encryption.  Their  design  enables

computations to be executed directly on the encrypted
data itself, and where necessary, they enforce highly
granular, fine-tuned access controls that restrict
decryption capabilities to only specific functions or
authorized individuals.

Conventional cloud-based computation and storage
paradigms, relying on contemporary cryptographic
methods, necessitate the decryption of customer data
prior to any processing or analytical operations.
Consequently, data privacy relies heavily on the
enforcement of security policies designed to prevent
unauthorized access to the decrypted information. In
this model, Cloud Service Consumers (CSCs) are
compelled to place trust in the Access Control Policies
(ACPs) implemented and maintained by their chosen
Cloud Service Providers (CSPs) for safeguarding data
privacy (Figure 1). In contrast, the adoption of FHE
enables data privacy to be cryptographically enforced
by the CSC, leveraging rigorous mathematical security
proofs. This paradigm shift ensures that the CSP,
lacking the requisite Secret Key (SK), will not have
access to unencrypted customer data, either during
storage or computation.

Fully Homomorphic Encryption (FHE) is the most
comprehensive cryptographic solution, enabling the
direct execution of arbitrary computations (any
function) on ciphertexts. Introduced by Gentry in 2009
[14], FHE fundamentally enables data owners to use
untrusted cloud services for analysis without exposing
their data in plaintext [15-23]. FHE can be classified
as word-wise [24-27] and bit-wise [28, 29] schemes as
per the supported operations. FHE enables arbitrary
computations to be performed on encrypted data
without decryption, utilizing three keys: the public key
(PK), the secret key (Sk), and the evaluation key
(EK). The public key can be used to encrypt data.
The secret key can be used to decrypt data. The
evaluation key can be used to evaluate circuits on
encrypted data. It is typically generated from the secret
key but can also be generated from the combination of
the public and secret keys.

Despite its comprehensive capabilities, general FHE
schemes still face challenges related to high
computational overhead and large ciphertext sizes. To
address these performance issues, the Cheon-Kim-
Kim-Song (CKKS) scheme [30] was developed as a
specialized variant of FHE in 2017. CKKS is uniquely
designed for approximate arithmetic on real and
complex numbers, making it highly suitable for
numerical analysis, machine learning, and statistical
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tasks. It supports efficient homomorphic operations on
encrypted fixed-point data, which is essential because
tax calculations often involve percentages and marginal

rates, requiring non-integer arithmetic. @ CKKS
significantly improves efficiency, offering faster
operation times and enabling batching (Single

Instruction Multiple Data (SIMD) operations) to process
multiple tax records simultaneously. CKKS is a set of
probabilistic polynomial-time algorithms regarding the
security parameter.

The algorithms are:

CKKS.KeyGen: generates a key pair.
CKKS.Enc: encrypts a plaintext.
CKKS.Dec: decrypts a ciphertext.

CKKS.Eval: evaluates an arithmetic operation on
ciphertexts (encrypted data).

While its efficiency stems from its approximate
nature—introducing a small, controlled margin of
error—this trade-off is often acceptable for the massive
performance gains it delivers in practical, large-scale
tax data processing. The practical application of CKKS
to tax analysis involves tasks such as calculating an
encrypted tax liability (T) based on an encrypted
income value (/) and a fixed tax rate (R). The
regulatory body can perform the homomorphic
multiplication C(T) = Hom.Mult(C(/), R) on an
untrusted server, and the result is only revealed
when decrypted by the user or a trusted party using
the secret key. This approach enables complex
analyses (e.g., audits or aggregated statistics) to be
performed without ever exposing sensitive individual
financial data.

3. RELATED WORK

The vulnerability of data during the computation
phase, especially when tax agencies outsource data
processing and storage to cloud providers, remains a
significant security concern. As noted by [14],
inadequate cryptographic boundaries often necessitate
the decryption of sensitive data for analysis, creating a
critical vulnerability. In the tax context, once decrypted,
data containing personal identifiers, income details,
investment information, or audit histories becomes
virtually unprotected. If intercepted or leaked during
processing, this information could be used to fuel
identity theft, targeted phishing scams, financial fraud,
or tax refund fraud. The threat landscape encompasses

not only external attackers but also insider threats,
such as malicious cloud employees, misconfigured
access controls, and accidental data leaks. The
complexity of legal regimes for data crossing agencies
or borders further complicates control. Ultimately, the
fear of electronic filing leading to long-term financial
pain quickly erodes taxpayer trust.

The shift towards online storage and cloud
computing by tax authorities has dramatically
escalated the risk of sensitive data breaches, misuse,
and re-identification [31]. emphasized that traditional
anonymization methods are no longer sufficient
because sophisticated attackers can leverage out-of-
band data sources such as leaked databases, public
records, or social media to link anonymized tax data
back to individual taxpayers. Tax datasets are
particularly vulnerable due to the inclusion of quasi-
identifiers, such as ZIP codes, income levels, and filing
status, which, once de-anonymized, can reveal highly
personal information, including employment history and
medical deductions. Furthermore, the reliance on cloud
providers introduces additional challenges, including
the cloud provider's potential superior access to
unsecured metadata, logs, or residual data, as well
as the complication of foreign law enforcement
obligations, which raises issues of compliance and
sovereignty. The overall lack of end-to-end
confidentiality in the analytic pipeline exposes tax
agencies to regulatory noncompliance, reputational
loss, and civil action. Fully Homomorphic Encryption
(FHE) schemes, such as CKKS [30], directly address
the issue of data exposure during computation by
enabling calculations to be performed directly on
encrypted data, eliminating the need for decryption.
Similarly, Functional Encryption (FE) [32], specifically
Inner Product Functional Encryption (IPFE) [33],
provides a mechanism for selective disclosure, where
only specific results (e.g., total tax owed) are revealed
while the underlying private data (e.g., income and
deductions) remain encrypted. Beyond computation,
the long-term storage of tax data in inadequately
secured databases poses significant risks, as tragically
demonstrated by the 2017 Equifax breach [7]. Best
practices to mitigate this include encrypting stored
data, limiting retention periods, and using role-based
access control. Cryptographic methods, such as Zero-
Knowledge Proofs (ZKPs) [34] and Secure Multiparty
Computation (SMPC) [35], also provide novel
mechanisms for validating taxpayer information or
conducting audits without revealing the raw data itself.
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Figure 1: The image contrasts two approaches: the traditional cloud model (left) requires decrypting sensitive data before
any computation can occur, whereas the FHE cloud model (right) enables computations to be performed directly on

encrypted data, significantly enhancing privacy.
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Figure 2: This model outlines the process of online tax
encryption, wherein sensitive financial data is initially
secured using either Fully Homomorphic Encryption (FHE)
or Multiparty Computation (MPC). The resultant ciphertext is
submitted to a cloud provider for secure processing (secure
computation). Upon completion, the user receives the
encrypted results and performs the final, local decryption to
retrieve the plaintext tax amount.

The integration of tax data analytics into Secure
Multiparty Computation (MPC)1 represents a significant

'MPC is a subfield of cryptography that enables multiple parties to jointly
compute a function over their private inputs without revealing those inputs
to each other or a third party [36, 37]. Essentially, it allows for analysis on
sensitive, decentralized data while the data itself remains encrypted or secret-
shared among the participants.

stride in privacy-preserving data analysis. A seminal
effort by [38] pioneered this field by securely merging
over 10 million Estonian tax records with roughly half a
million education records. Their goal was to analyze
the effect of student employment on graduation
timelines. Utilizing the Sharemind MPC platform, which
implements cryptographic protocols such as secret
sharing to distribute data among non-colluding servers,
they ensured the cryptographic protection of individual-
level data throughout the computation. Each server
holds only a share of the data, which is meaningless in
isolation, thus preventing any single entity from learning
the sensitive information. Crucially, their study
demonstrated that MPC provided better utility
compared to traditional anonymization methods, such
as differential privacy or aggregation, which often
distorted or even eliminated large segments of the
original dataset to achieve a privacy guarantee. This
work provided concrete evidence that MPC can offer
robust privacy without compromising analytical
correctness, thereby paving the way for its application in
large-scale, real-world tax applications.

CKKS Fully Homomorphic Encryption (FHE) offers
a compelling justification over Secure Multiparty
Computation (MPC) for many advanced analytical
tasks by providing superior computational efficiency
and a simpler deployment trust model. Unlike MPC,
which  requires  frequent, high-volume network
communication between multiple non-colluding servers
for every step, CKKS performs the entire computation
on a single, untrusted server that operates exclusively
on encrypted data, thereby dramatically reducing
communication overhead and improving scalability,
which is crucial for large-scale statistical analysis and
machine learning.

Furthermore, CKKS is inherently optimized for
approximate arithmetic over real and complex
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numbers, making it analytically superior for modern
algorithms like neural networks, whereas MPC is
fundamentally based on less-flexible integer arithmetic;
finally, the deployment of CKKS avoids the significant
logistical challenge of securing and coordinating a
network of multiple, independently audited MPC
parties.

Complementary  efforts have focused on
modernizing data access through the use of synthetic
data and privacy-preserving design [39]. detailed
initiatives by the Internal Revenue Service (IRS) and
the Tax Policy Center to address the classic trade-off
between utility and privacy. Their innovative approach
involves combining a fully synthetic tax data set with a
secure validation server. This setup allows researchers
to confirm their findings against the real, confidential
source data without ever directly viewing it. The
resulting public-use file statistically represents the
underlying universe, yet prevents any actual disclosure
of individual tax returns. While the authors emphasized
the difficulties they overcame in designing the model,
controlling for bias, and ensuring transparency, they
ultimately concluded that synthetic data systems hold
the key to providing broader, pivotal access to sensitive
tax data in a privacy-conscious manner.

A separate thread of research has explored the
application of Differential Privacy (DP)2 [44-46] to
administrative tax and survey data [47]. conducted a
feasibility study on using DP for summary statistics and
regression analyses. They found that while DP
methods are effective in protecting privacy for basic
outputs, such as means or counts, the extraordinarily
high levels of noise induced during complex analyses,
like regression analyses, often render the results so
degraded as to have minimal practical use. The study
highlighted that contextual factors, including sample
size, data sparsity, and model complexity, significantly
impact the efficacy of DP, as more complex or sparse
data requires a greater injection of noise to maintain
the same privacy guarantee (€). These findings
highlight significant limitations in applying pure DP to
complex, high-dimensional, and policy-relevant tax
analyses, underscoring an urgent need for hybrid
privacy methods that can ensure both confidentiality
and analytic validity.

DPisa rigorous, mathematical definition of privacy that ensures the outcome
of an analysis is virtually the same whether any single individual’s data is
included or excluded from the dataset. It achieves this guarantee by
strategically introducing a controlled amount of random noise to the
computation or the output [40-43]. This noise masks the presence or absence
of any individual's record, thereby preventing an attacker from inferring
sensitive personal information by comparing analysis results.

The notion that CKKS Fully Homomorphic
Encryption (FHE) inherently provides Differential
Privacy (DP) is a compelling idea, although it is not
strictly true without careful parameter tuning. CKKS is
an approximate FHE scheme, meaning it naturally
incorporates and  accumulates  noise  during
homomorphic computations to ensure its cryptographic
security (based on the Ring-LWE problem). This noise,
which is typically sampled from a Gaussian distribution,
grows predictably with each arithmetic operation.
However, a critical limitation is that the magnitude of
this cryptographic noise can sometimes be dependent
on the plaintext data itself, which can compromise the
stringent, input-independent privacy guarantee required
by standard DP, often necessitating the addition of
extra noise to achieve the DP goal formally.

The native noise inherent in the CKKS scheme,
although present, is not intentionally calibrated to
satisfy the requirements of DP. The accumulated
Gaussian noise that naturally arises during CKKS
homomorphic operations is primarily a function of the
data’s scale and the chosen cryptographic parameters,
and is therefore data-dependent. Achieving a formal,
quantifiable DP guarantee (€) on the final output
requires an additional, carefully designed mechanism
of noise injection. This deliberate noise must be added
post-computation and calibrated independently to the
sensitivity of the final query, ensuring that the
necessary privacy budget is met, regardless of the
underlying CKKS noise, which cannot be reliably
leveraged to provide DP “for free.”

Addressing the need for more efficient and secure
cryptographic solutions, [48] discussed the design of an
efficient and secure inner-product predicate encryption
(IPE)3 system. Specifically, IPE works by checking if
the inner product of two vectors—one embedded in the
secret key and one in the ciphertext—equals zero (or
some other specific relationship). This allows for
expressive, fine-grained access control; for instance, a
key could be programmed to decrypt tax records (the
ciphertext) only when the vector of attributes (e.g.,
income bracket, location, filing status) satisfies a
complex, multidimensional query defined by the key’s
inner product vector. Traditional PE often suffers from a
trade-off between privacy and performance, with early

®Inner-Product Predicate Encryption is a form of Predicate Encryption (PE), a
type of Public-Key Encryption where the decryption key is associated with an
access policy (a predicate) and the ciphertext is associated with an attribute
value. [49] Decryption is only possible if the ciphertext’'s attribute value
satisfies the key’s predicate.
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IPE systems exhibiting limited practicality for real-time
or large-scale deployment due to high decryption costs
and large key and ciphertext sizes. The authors’ goal
was to make IPE faster and more practical for real-
world use without sacrificing its cryptographic security,
a key requirement for modern, large-scale tax systems.

CKKS Fully Homomorphic Encryption (FHE) is
superior to Inner-Product Predicate Encryption (IPE)
for complex analytical tasks because CKKS enables
arbitrary  computation, including additions and
multiplications over real and complex numbers, to be
performed directly on encrypted data. This is
essential for statistical models and machine learning.
Conversely, IPE is fundamentally an access control
mechanism that only allows users to decrypt data if
their secret key’s attributes match the ciphertext’s
attributes via an inner-product check, not a general-
purpose tool for running algorithms on the encrypted
data itself.

Therefore, when the requirement is to analyze the
data privately, CKKS is the necessary cryptographic
tool.

zkTax [50] represents a practical and privacy-
preserving advancement built on advanced
cryptographic concepts. It utilizes zk-SNARKSs (Succinct
Non-interactive Arguments of Knowledge), a highly
efficient class of Zero-Knowledge Proofs (ZKPs).4 The
zkTax system maintains completeness (valid
statements produce valid proofs) and soundness
(invalid statements cannot generate valid proofs) while
preserving zero knowledge—meaning no additional
data is leaked beyond the disclosed claim. zkTax’s
core impact stems from its pragmatic implementation,
as it is designed to integrate smoothly with existing tax
workflows (e.g., IRS Form 1040 in the U.S.) with
minimal infrastructural demands. The creators
demonstrated its utility in real-world scenarios,
including tenant income verification, public benefit
qualification, and small business auditing, positioning it
as a key reference for future research in secure digital
compliance across taxation, healthcare, finance, and
identity verification.

4Zero-KnowIedge Proofs allow one party (the prover) to cryptographically
convince another party (the verifier) that a specific statement is true without
revealing any information beyond the validity of the statement itself. Zk-
SNARKSs take this concept further by producing proofs that are succinct
(extremely small) and non-interactive (requiring only a single message from
the prover to the verifier, or a one-time setup), leading to compact proofs and
fast verification [51].

CKKS Fully Homomorphic Encryption (FHE) is
justified over zk-SNARKs when the objective is to
perform arbitrary, complex computations on large,
encrypted tax datasets, especially involving real or
complex numbers. CKKS is a computational scheme
that enables an untrusted server to execute full
algorithms, such as regression or machine learning
models, directly on encrypted data, leveraging its
native support for approximate floating-point arithmetic.
In contrast, zk-SNARKSs are a verifiability tool used to
prove the truth of a specific, discrete statement about
secret data, requiring computations to be compiled
into complex integer-based arithmetic circuits, which is
far less practical and efficient for performing general,
data-intensive statistical analysis.

Finally, libraries supporting these complex
cryptographic schemes are evolving. PyFHE [52] is a
Python-native library developed by Zama, focusing on
Fully Homomorphic Encryption (FHE) at the gate level.
It enables the encryption, bootstrapping, and evaluation
of Boolean circuits, making it ideal for research and
experimentation in secure computation protocols that
require binary operations and circuit-level control.
Unlike libraries like Pyfhel [53], which focus on high-
level arithmetic, PyFHE operates on binary gates
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Figure 3: This schematic illustrates the CKKS-FHE workflow
for privacy-preserving tax analytics. Users generate their
Secret, Public, and Evaluation Keys. The Evaluation Key is
shared with the Tax Authority (cloud server), which
computes encrypted tax analytics on user data, encrypted via
the Public Key. Users then decrypt the resulting tax
credit/debit locally using their Secret Key, ensuring end-to-
end data confidentiality.
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(AND, OR, XOR), aligning with low-level FHE
implementations such as TFHE. Although its pure
Python architecture results in slower performance
compared to compiled libraries, it increases
accessibility, educational use, and ease of modification
for research, making it particularly useful when
complete control over the FHE pipeline—such as
benchmarking custom circuits or testing novel
bootstrapping techniques—is required.

4. PROPOSED SOLUTION

This solution proposes establishing a specialized,
privacy-preserving computation environment
meticulously configured to support encrypted tax
evaluation workflows utilizing Fully Homomorphic
Encryption (FHE). The initial environment setup is a
crucial step, ensuring that all necessary tools, libraries,
and dependencies are correctly installed to guarantee
the reproducibility, correctness, and performance of the
entire encrypted computation pipeline. The core of this
implementation relies on PyFHE [52], a Python-based
cryptographic library that furnishes robust support for
the CKKS homomorphic encryption scheme. CKKS is
particularly well-suited for financial computations, such
as tax processing, because it permits approximate
arithmetic operations directly on encrypted floating-
point data. Using this established environment,
individual users gain the ability to locally encrypt their
sensitive financial information—including income,
deductions, and tax credits—before transmitting it to
a semi-trusted computation host, such as a cloud
server. These encrypted inputs are then processed by
the host using FHE to accurately calculate complex
values, such as Adjusted Gross Income or the taxes
owed, all without ever needing to decrypt and expose
the underlying sensitive data to the computation
provider. This ensures a high degree of confiden-
tiality throughout the entire tax analysis process.

All computational experiments are designed to be
conducted within Jupyter Notebooks [54]. This choice
provides an exceptionally flexible and interactive
interface, seamlessly integrating documentation,
executable code, and resulting output into a single,
shareable environment. Within this framework, it is
possible to trace and visualize encrypted inputs,
intermediate ciphertexts, and final decrypted outputs
in a step-by-step manner. Jupyter serves as a
valuable platform for not only debugging and
validation but also for demonstrating the correctness
and providing pedagogical explanations of the complex
homomorphic operations being applied.

While PyFHE is the primary implementation library,
drawing directly from the efficient approximate
homomorphic encryption scheme introduced by [30] in
their seminal CKKS paper, other popular FHE
frameworks were also considered. These include
libraries like Microsoft SEAL (C++) [55], PALISADE
(C++) [56], and Concrete [57] by Zama (Rust and
Python bindings), which offer different languages,
optimization strategies, and support for alternative
encryption schemes (e.g., BFV [58, 59] and BGV [60]).
PyFHE was selected for its accessible Pythonic
interface, which allows for practical experimentation
with CKKS without requiring a deep, low-level
cryptographic background. This entire setup is
designed to facilitate the reproducible, secure, and
transparent evaluation of encrypted tax workflows,
serving both as a robust research framework and a
practical pedagogical tool.

For validation and testing, synthetic taxpayer data
was generated to accurately simulate a wide variety of
realistic tax scenarios. This simulated data
encompassed different filing statuses, income levels,
and deduction types. Key input variables included
Gross income, Filing status, Number of dependents,
Deductible expenses, and Withholdings. Before any
computation, all these inputs are encrypted using FHE,
where a public/private key pair is first generated. This
enables single-party encrypted computation, ensuring
that the encrypted inputs are used directly throughout
the simulation without any intermediate decryption,
thereby maintaining the confidentiality of all
intermediate results and outcomes. The simulation
process is broken down into a structured, five-step
workflow:

. Model Encoding: The specific tax formulas for
the DMV (District of Columbia (D.C.), Maryland
(MD), and Virginia (VA)) must be accurately
encoded into logic that is fully compatible with
the chosen CKKS encryption scheme.

. Data Encryption: All synthetic taxpayer data is
encrypted using the generated public key.

. Encrypted Computation: The complex tax
calculations are performed entirely on the
encrypted inputs, without the computation host
ever accessing the plaintext data.

i Decryption and Validation: The final encrypted
outputs, such as the calculated tax owed or
refund amount, are decrypted and validated.
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These results are then critically compared
against known plaintext baselines, which are
generated by traditional tax software, to assess

the computation’s accuracy (correctness)
rigorously.
. Performance Analysis: To evaluate the solution’s

scalability and practical viability, key metrics,
including execution time, memory usage, and
computational overhead, are systematically
recorded and analyzed.

The CKKS scheme supports compliant auditing and
evidentiary integrity by fundamentally altering the point
at which data is exposed. It enables authorities to
execute complex analytical workflows and auditing
rules directly on the encrypted financial data
(ciphertexts) without requiring a decryption step within
the processing environment. This robust homomorphic
computation guarantees that the final encrypted tax
outcome is a cryptographically verifiable result of
applying a specific, verifiable set of rules (the tax code)
to the original encrypted inputs. Consequently, the
submitted evidence (the encrypted filing) remains
secure and untampered throughout the entire pipeline,
and the computational process can be audited for
correctness without compromising confidentiality. This
capability is essential for achieving zero-trust
compliance because it removes the need to trust the
processing environment with cleartext data, thereby
preserving evidentiary integrity throughout the
automated review process.

The success and trustworthiness of this privacy-
preserving solution are evaluated using a
comprehensive set of metrics. These metrics include
ensuring correctness by matching homomorphic
computation results with those from traditional tax
software, guaranteeing confidentiality by verifying that
no intermediate values leak sensitive taxpayer
information, and measuring efficiency through total
runtime and resource usage across varying input sizes
and encryption complexities. Furthermore, we establish
jurisdictional fidelity by confirming that the encrypted
pipeline strictly complies with the 2024—-2025 tax code
for each specified jurisdiction (MD, VA, and D.C.),
thereby validating the real-world applicability and legal
adherence of the homomorphically computed results.

5. EXPERIMENTAL RESULTS

The project successfully demonstrated the
effectiveness of applying homomorphic encryption for

secure tax analysis, specifically utilizing the CKKS
(Cheon-Kim-Kim-Song) scheme to compute tax
liabilities on encrypted taxpayer data. The core
implementation involves a comprehensive
homomorphic encryption pipeline where sensitive
taxpayer inputs—including gross income, as well as
federal, state, and local tax rates—are encrypted prior
to any computation. The necessary arithmetic
operations, such as multiplication, addition, and
subtraction, which simulate the entire tax calculation
process, are executed entirely within the encrypted
domain.

A key privacy feature of this approach is that only
the final output (the amount owed or the refund due) is
decrypted, guaranteeing end-to-end privacy for the
taxpayer’s financial information. To thoroughly evaluate
the robustness and accuracy of the encrypted
calculations, a set of synthetic test profiles was created
to simulate real-world diversity. These profiles mirrored
the distinct regional tax rules and deduction patterns
found across Maryland, Washington, D.C., and
Virginia. For each state, we designed three sample
employees, strategically assigning them varying
income levels and types of deductions. The objective
was to create a comprehensive test suite where one
employee would owe taxes, a second would receive
a refund, and a third would land on a final tax balance
of precisely zero. This was achieved by carefully
adjusting the income and deductions to ensure the
individuals interacted differently with available tax
brackets and credits.

Figure 4: Ciphertexts generated using Fully Homomorphic
Encryption (FHE) schemes are represented as high-degree
polynomials over a specified ring.
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Taxpayer Plaintext Tax Encrypted Result Difference

Alice [Refund) -39238.24996165964 -39238.24996165964 00

Bob (Owes) 18351.239982071667 18351.239982071667 [ale}

Carol (Zero) 0.0 0.0 00

Figure 5: Comparison of final tax amounts computed in
plaintext versus via the CKKS homomorphic-encryption
pipeline, and their differences. Plaintext values were
obtained by subtracting all deductions (standard deduction,
retirement, and student loan) from gross income and then
applying D.C. tax rates (22% federal, 8.5% state, 0% local).
The encrypted pipeline encoded and encrypted the same
inputs, performed all arithmetic operations (deduction
subtraction, rate multiplication, and summation of tax
components) directly on ciphertexts, and finally decrypted
the result. The “Difference” column shows the plaintext result
minus the decrypted encrypted result, effectively zero,
demonstrating that homomorphic evaluation reproduces
exact tax amounts within CKKS’s approximation bounds.

All tax calculations across these test cases were
performed exclusively on the encrypted data using the
CKKS scheme. Upon decryption, the final results
consistently and closely matched the expected
outcomes computed in plaintext. As shown in Figure 5,
the homomorphic evaluation successfully reproduced
the exact tax amounts, with only a minute margin of
error attributable to the inherent floating-point
approximations of the CKKS scheme. For instance,
the Washington

The D.C. test group provided clear validation: the
low-income employee with significant education-related
deductions received a refund, the mid-income
individual with standard deductions resulted in a zero
tax balance, and the high-income earner with fewer
deductions owed taxes. This exact pattern was
successfully replicated in both the Maryland and
Virginia groups, demonstrating that the encrypted
pipeline can correctly process a variety of complex tax
scenarios while upholding user privacy and delivering
accurate, usable outputs.

Further research explored the application of
privacy-preserving tax analytics using the TenSEAL
library [61], which is optimized for homomorphic
encryption and ensures data confidentiality during
computation. This implementation included a separate
dataset featuring three individuals: Alice, Bob, and
Charlie, each with distinct income and deduction
profiles. Their incomes and deductions were encrypted
before any tax calculations were initiated. The federal,
state, and local tax rates (set at 15%, 10%, and 5%
respectively) were applied to the encrypted income,
followed by the subtraction of deductions to determine

the final tax return for each person. The inherent use
of encryption ensured the sensitive financial data
remained fully private throughout the process. The
process of calculating the encrypted tax returns is
illustrated in the accompanying visualizations (Figure
6). The final computed tax returns were then decrypted
to reveal the tax balance. This phase successfully
confirmed that, despite all computations being hidden,
the system correctly processed the data: Alice
received a positive tax return, Bob’s higher income
resulted in a larger positive return, and Charlie’s lower
income combined with high deductions led to a
negative tax balance (a refund). This detailed
experiment confirms that privacy-preserving
techniques, particularly homomorphic encryption, can
be practically applied to sensitive financial calculations,
making them highly suitable for applications where data
confidentiality is paramount.

6. DISCUSSION

This work successfully demonstrates the feasibility
of a fully privacy-preserving tax computation utilizing
the CKKS fully homomorphic encryption (FHE) scheme
for core arithmetic operations. We confirmed that
CKKS can accurately support approximate arithmetic
over real-valued financial inputs without exposing
sensitive taxpayer data. The results for our encrypted
tax calculation closely matched the corresponding
plaintext baseline—with a negligible discrepancy
(error < 0.1%)—validating the suitability of CKKS for
high-precision tax arithmetic. Significantly, these
findings extend previous work on homomorphic
evaluations of statistical models by proving that even
conditionally executed logic (e.g., classifying a taxpayer
as receiving a refund or owing) can be managed
correctly by decrypting only the final decision values.

Despite encouraging accuracy, several limitations
persist. The primary concern is the current prototype’s
runtime, which, at approximately one second per
taxpayer on a standard workstation, may be prohibitive
at national scales. Achieving practical throughput will
require further optimizations, specifically parameter
tuning for the CKKS scheme, leveraging ciphertext
batching to process multiple  data  points
simultaneously, and implementing GPU-accelerated
arithmetic. Secondly, our evaluation relied on a
synthetic dataset. While representative, this dataset
may not capture the full variability of real-world tax
data, such as intricate deductions or non-linear
incentives. Ultimately, future development should
consider integrating explainable models or privacy-
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5]: import pandas as pd
inport tenseal as ts

dats =

Aaw Data:

name income deductions
e alice 4zees see
ol Bob  eges 1208
2 Charlie 25800 8808

federal_rate = @.15

def conpute_tax_return(income)

taxable_income = 1 £ Sto
tax_due = virginia_tax(taxable_income)
return_balance = tax_due

return return_balance

encrypted_results =

enc_income = ts.ckks_vector(context, [income])

enc_deductions = ts.ckks_vector(context, [deductions])

“r 9.85},
0.032}, # Compute taxes
enc_federal = enc_income * federal_rate
enc_state = enc_income * tax_rates["state”
enc_local = enc_income * tax_rates["local”

enc_total_tax = enc_federal + enc_state + enc_local

enc_return = enc_total_tax - enc_deductions

Figure 6: This Jupyter Notebook implementation, leveraging the TenSEAL library, illustrates a privacy-preserving tax
calculation model. It applies distinct state and local tax rates for D.C., MD, and VA by executing the complete computation
homomorphically on the ciphertexts, ensuring the data remains encrypted throughout the process.

preserving feature attribution to enhance transparency
for both taxpayers and auditors.

Beyond the technical challenges of data handling,
the national-scale deployment of FHE for tax analysis
necessitates a thorough assessment of its economic
and environmental costs. FHE operations are
computationally intensive, leading to significantly higher
execution times and resource consumption compared
to cleartext processing. At a national level, encrypting,
processing, and auditing millions of tax filings using
CKKS would require an exponentially larger computing
infrastructure, resulting in a direct increase in capital
expenditure for hardware (high-performance servers
and specialized FHE accelerators) and a significant
rise in operational expenditure for energy consumption.
This heightened energy demand raises critical
concerns about environmental sustainability, making
the carbon footprint of FHE a relevant policy
consideration.

While FHE offers unparalleled privacy, its
implementation requires a strategic economic model
that either leverages accelerator technologies (e.g.,
FPGAs or custom ASICs) to boost performance and
energy efficiency or utilizes robust, privacy-preserving
parallel processing architectures to distribute the
immense computational load efficiently across the
national infrastructure. The trade-off between absolute
data privacy and the substantial economic and
environmental investment required for national-scale
deployment is a key area for ongoing research and
policy discussion.

The practical realization of a privacy-preserving tax
analysis system using FHE, such as CKKS, hinges
critically on the preprocessing and encoding pipeline for
real-world tax data. Unlike clean, theoretical datasets,
actual tax filings present significant challenges,
including unstructured attachments (e.g., scanned

receipts, PDF documents), manual amendments filed
post-submission, and the complexity of multi-year
filings that require historical data coherence. A robust
preprocessing layer is mandatory to parse,
standardize, and extract structured numerical
information from these varied sources. This involves
advanced techniques, such as Optical Character
Recognition (OCR) and Natural Language Processing
(NLP), to convert unstructured text into a standardized
data schema suitable for FHE. Once structured, the
numerical data must be carefully encoded into the
plaintext slots of the CKKS scheme’s polynomial
structure. This encoding process requires balancing
the precision of financial values (e.g., using fixed-point
representation for dollar amounts) against the
multiplicative depth and noise budget limitations of the
FHE ciphertexts. Effectively managing this conversion
is essential to ensure that the encrypted computations
maintain sufficient accuracy for tax calculations while
accommodating complex scenarios, such as carrying
forward losses or integrating amended filings, which
introduce a new dimension of data lineage and
dependency that must be preserved under encryption.

Future research will concentrate on four key areas.

. First, we must focus on performance tuning and
scaling by implementing optimized CKKS
parameter sets, exploiting batching and
parallelism, and benchmarking on larger clusters
to support bulk processing.

. Second, we need to integrate rich tax logic,
extending the encrypted pipeline to handle real-
world tax  code complexities—including
refundable credits, phase-outs, and non-linear
thresholds—while maintaining accuracy.

. Third, exploration into advanced risk models is
necessary, integrating more expressive machine
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learning techniques (e.g., kernel methods, tree
ensembles) under encryption or via hybrid
secure protocols, and rigorously evaluating their
privacy-utility trade-offs.

. Lastly, we must conduct regulatory and usability
studies to assess the legal frameworks and user
acceptance factors crucial for deployment by tax
authorities, including managing key
management, auditability, and developing end-
user interfaces.

Our framework offers compelling advantages for
secure tax analysis. It ensures zero data exposure;
even the tax system provider cannot see user
information, effectively eliminating insider threats and
data breaches. The design supports audits and
compliance without compromising privacy and is built
to be scalable for federal and state-level adoption.
Ultimately, this capability helps build public trust in
digital taxation systems. Overall, these results strongly
suggest that FHE can form a practical foundation for
secure digital tax systems, enabling authorities to
perform critical compliance and risk assessments
without ever accessing raw personal data. This work
establishes the foundation for next-generation tax
platforms that successfully balance strong privacy
guarantees with the accuracy and transparency
essential for public confidence.

7. CONCLUSION

We successfully designed and validated a fully
encrypted pipeline for both sophisticated tax calculation
and preliminary risk assessment. This system leverages
advanced cryptographic techniques to ensure that
complex financial computations can be executed
without ever decrypting the underlying data. The
demonstrated solution achieves near-perfect fidelity to
plaintext calculations, exhibiting an error rate of less
than 0.1%. Crucially, this high accuracy is maintained
while handling sophisticated tax logic, including the
application of progressive brackets, navigating multi-
jurisdictional rates, and processing conditional
refunds—all of which are entirely encrypted.

This work represents a significant step toward
achieving accurate zero-trust tax compliance by
ensuring that sensitive financial information is never
exposed to the service provider or auditor during
processing. However, this shift in trust inherently
introduces new security and operational risks that
require careful management and mitigation. Since the

cryptographic security relies entirely on the client's
infrastructure, the system is now vulnerable to the
compromise of secret keys, which would allow an
attacker to decrypt all related ciphertexts. Furthermore,
any undetected vulnerabilites in the client-side
encryption environment (e.g., flaws in key generation or
the implementation of the FHE library) could lead to
systemic data leakage. Finally, the FHE model
creates a catastrophic risk of permanent data loss if
the decryption keys are irrevocably lost; unlike
traditional systems, there is no centralized copy of
the cleartext data to recover. Therefore, the successful
national-scale deployment of this approach must be
coupled with robust, multi-factor key management,
secure hardware modules, and a comprehensive
disaster recovery protocol to mitigate these critical new
single points of failure.

Looking ahead, our focus will shift to maximizing the
efficiency and breadth of the system. We plan to
dedicate substantial effort to optimizing encrypted
arithmetic through methods such as batching, strategic
parameter tuning, and integration with specialized
hardware acceleration to enhance scalability and
throughput. Furthermore, the system’s utility will be
extended to support a wider array of real-world
scenarios, particularly complex deductions and credits
that are currently challenging to model
homomorphically. A key area of innovation involves
embedding the CKKS homomorphic encryption
scheme directly into Support Vector Machine (SVM)
inference. By combining this with advanced feature
engineering, we aim to increase the accuracy of SVM-
based tax risk classification to 1.0 on encrypted data.
Ultimately, this capability to provide secure audits,
deliver scalable performance, and guarantee zero data
exposure is poised to revolutionize global tax
compliance, paving the way for governments, financial
institutions, and service providers worldwide to
modernize their operations. By doing so, our work not
only fosters public trust and dramatically reduces
breach risk but also accelerates the global transition to
secure, robust digital taxation systems.
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