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Abstract: The increasing global adoption of electronic tax systems inherently introduces significant privacy and security 
risks, primarily stemming from the reliance on cloud infrastructure for storing and processing highly sensitive financial 
data. Conventional digital tax platforms typically necessitate unrestricted access to taxpayers’ raw data, thereby 
rendering these systems acutely vulnerable to sophisticated cyberattacks, large-scale data breaches, and malicious 
insider threats. This exposure fundamentally compromises the confidentiality of personal financial records and 
demonstrably contributes to the erosion of public trust in governmental digital services. To address these challenges, 
we introduce a privacy-preserving framework specifically engineered for secure tax calculation. Our technical solution is 
founded on the strategic integration of Fully Homomorphic Encryption (FHE), specifically employing the Cheon-Kim-Kim-
Song (CKKS) scheme. The CKKS scheme is uniquely suited to enabling approximate arithmetic on encrypted data, 
which facilitates the secure evaluation of complex, real-valued inputs, including income figures, allowable deductions, 
and financial risk metrics. We implemented an encrypted tax pipeline utilizing the CKKS scheme. This pipeline rigorously 
supports the necessary real-valued operations and ensures the secure computation of core tax outcomes, including the 
exact tax owed, potential refund amounts, and predictive fraud assessment, with inherent implications for compliant 
auditing and maintaining evidentiary integrity. Experimental results conclusively demonstrate that our proposed system 
maintains both high utility and accuracy in its calculations while simultaneously guaranteeing data confidentiality. This 
approach establishes a practical foundation for building secure, transparent, and trustworthy digital tax infrastructures. 
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1. INTRODUCTION 

Taxation has been a societal reality for millennia, 
with origins dating back to the three oldest known 
civilizations: Mesopotamia (c. 4000–3000 BCE) [1-3], 
Egypt (c. 2700–2200 BCE) [4, 5], and the Indus Valley 
(c. 2500–1700 BCE). In these foundational systems, 
individual obligations to the governing authority were 
typically fulfilled not through monetary payments but 
through contributions of livestock, grain, or labor. While 
these ancient societies maintained mechanisms for 
revenue collection for the ruler, a truly formalized and 
comprehensive tax system had not yet been fully 
developed. The systematization of taxation principles 
is traced mainly to the period of Kautilya’s Arthashastra 
(350–275 BCE) [6]. Since then, the fundamental 
purpose of taxes—the collective financial contribution 
toward public services—has remained constant, but the 
methods of collection and administration have 
undergone dramatic transformation, progressing from 
handwritten ledgers to contemporary digital filing 
systems driven by successive technological shifts. 

In recent decades, the widespread advent of the 
internet has fundamentally revolutionized global 
financial transactions and information exchange. The 
prevalent client-server model, which forms the 
architectural backbone of the World Wide Web, 
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facilitates communication where clients (such as 
personal computers or mobile devices) interact with 
centralized servers that host services and store data. 
Tax preparation and filing processes have migrated 
mainly to the online domain, with commercial 
applications becoming industry standards for 
simplifying the user experience. These digital services 
enable individuals to upload financial documents, link 
external bank accounts, and automatically populate 
statutory tax forms online. However, while user 
convenience has improved substantially, the attack 
surface has concurrently expanded. As sensitive 
personal and financial data are perpetually transmitted 
and stored across intricate, interconnected systems, 
the potential for interception, unauthorized mani-
pulation, or malicious access escalates significantly. 

The risks inherent in online tax filing are not merely 
theoretical; they represent real, pressing, and growing 
threats. Cyberattacks specifically targeting financial 
and tax-related data systems have historically resulted 
in some of the most significant data security breaches 
recorded. 

The 2017 breach of Equifax, one of the three major 
credit reporting agencies, exposed the personal data 
of an estimated 147 million U.S. consumers [7]. The 
compromised data, which was subsequently exploited 
for tax fraud, was extensive, encompassing names, 
Social Security numbers, dates of birth, addresses, 
and in some cases, driver’s license and credit card 
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information. The financial impact of this incident was 
substantial, costing Equifax over $1.4 billion in legal 
fees and related expenses [8]. 

The extensive exposure of Social Security numbers, 
in particular, created a severe and enduring risk for tax-
related identity theft and fraudulent refund claims. 
Possessing this level of authenticated personal data 
allows malicious actors to file illegitimate tax returns or 
gain unauthorized access to existing taxpayer accounts 
with alarming success rates. 

A more recent security incident in May 2024, 
involving the luxury retailer Neiman Marcus, highlighted 
the systemic risks associated with relying on third-party 
cloud providers [9]. 

Neiman Marcus was among the more than 165 
organizations impacted by the widespread Snowflake 
cloud data breach, confirming the attack after hackers 
attempted to sell the company’s compromised 
database [10]. Regulatory documents filed in Maine and 
Vermont confirmed that the breach affected 64,472 
individuals, exposing their names, contact information, 
dates of birth, transaction histories, and fragments of 
sensitive data, including Social Security and credit card 
numbers. Furthermore, the perpetrators claimed 
possession of over 30 million email addresses and 70 
million transaction records. While this was not a direct 
attack on governmental tax infrastructure, the exposed 
data is precisely the type that cybercriminals routinely 
repurpose to execute sophisticated tax fraud, including 
opening fraudulent tax accounts, deceiving human 
resources into issuing W-2 forms, or impersonating 
individuals during tax season. The financial 
repercussions of the incident resulted in a $3,500,000 
class action settlement reached against The Neiman 
Marcus Group LLC [11]. 

A significant breach directly compromising tax 
records occurred in 2015 when unauthorized actors 
exploited the Internal Revenue Service’s (“IRS”) “Get 
Transcript” service. This online feature, designed to 
allow users to view and download their past tax 
records, suffered from weak authentication protocols, 
rendering it an accessible target and utilizing previously 
stolen personal identifiers—such as Social Security 
numbers, dates of birth, and addresses—criminals 
successfully bypassed security mechanisms to gain 
unauthorized access to an estimated 334,000 taxpayer 
accounts [12]. The breach, which occurred between 
February and mid-May, exposed sensitive records 
containing past tax filings, income sources, and refund 

histories. The fraudulent activity involved the 
subsequent submission of fake tax returns, leading to 
estimated losses of up to $50 million in fraudulent 
refunds before the service was temporarily shut down 
[13]. This incident highlights how inadequate security 
mechanisms can severely compromise even officially 
sanctioned government systems. 

The ramifications of these extensive attacks are 
profound and widespread. Millions of individuals have 
had their tax-relevant information exposed, allowing 
criminals to successfully impersonate taxpayers, illicitly 
redirect refunds, and inject significant instability into the 
national tax system. For governmental agencies, these 
breaches translate to substantial revenue loss, severely 
damaged public credibility, and a rapidly increasing 
administrative burden from processing fraud claims. For 
individuals, these incidents represent a grave violation 
of privacy, immediate financial insecurity, and the 
potential for long-term identity theft risks. 

Despite the existence of current encryption 
measures, the overwhelming majority of existing tax 
systems still require user data to be decrypted 
immediately before it can be processed. This 
obligatory decryption creates a critical vulnerability at 
the precise moment computations are performed. The 
escalating use of electronic tax systems worldwide 
exposes a significant vulnerability: the need to decrypt 
highly sensitive financial records for processing, 
which opens the door to cyberattacks and data 
breaches. To address this systemic risk, we propose 
a novel cryptographic framework that leverages Fully 
Homomorphic Encryption (FHE). FHE is an advanced 
cryptographic method that uniquely enables 
computations to be performed on encrypted data 
without ever requiring decryption. FHE ensures that 
data remains strictly confidential across every stage of 
processing, from initial submission to final calculation 
and potential audit. 

Specifically, we employ the Cheon-Kim-Kim-Song 
(CKKS) scheme, which is optimized for approximate 
arithmetic on encrypted, real-valued financial data. This 
FHE-CKKS foundation offers a fundamental shift in 
data security. It enables taxpayers to submit their 
financial data in a strictly encrypted form, allowing the 
tax system to perform all necessary computations 
(such as calculating tax owed or refunds) directly on 
the ciphertexts. The raw data is never decrypted at any 
stage of processing, ensuring end-to-end confidentiality 
from submission through calculation and audit. This 
model is crucial for legal compliance by 
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cryptographically enforcing data sovereignty and 
eliminating compliance risks associated with exposing 
sensitive information across borders. Furthermore, for 
forensic investigation, the FHE-CKKS design 
enables tax authorities to execute complex analytical 
workflows and conduct comprehensive, zero-trust 
audits directly on encrypted data, thereby guaranteeing 
evidentiary integrity without requiring access to private 
taxpayer information. 

While existing academic and industry work has 
explored the application of privacy-preserving 
technologies in sectors such as healthcare and finance, 
few dedicated efforts have explicitly focused on FHE in 
the complex domain of taxation. Furthermore, 
alternative solutions, such as existing secure multiparty 
computation or zero-knowledge proof systems, currently 
suffer from prohibitive performance or complexity 
constraints that preclude their practical scalability for 
millions of taxpayers. 

Our specialized approach directly addresses both 
efficiency and usability by tailoring FHE schemes to the 
specific structure and arithmetic demands of tax 
computations, enabling practical deployment without 
compromising performance or the user experience. 

2. BACKGROUND 

The rigorous analysis of sensitive financial data, 
particularly records relating to taxation, necessitates 
the implementation of robust security mechanisms. 
These measures are essential to ensuring the 
fundamental preservation of individual data privacy 
while simultaneously facilitating the essential 
computational and analytical operations required by 
government agencies or third-party auditors. 
Conventional data processing methodologies often 
require that the data be converted into its plaintext, 
or unencrypted, form. This inherently introduces a 
singular and critical point of vulnerability within the data 
lifecycle, exposing the information to potential breaches 
or unauthorized access during processing. 

This work is dedicated to addressing this inherent 
challenge through the strategic application of advanced 
cryptographic primitives. Specifically, the research 
leverages Fully Homomorphic Encryption (FHE), a 
specialized scheme known as the CKKS scheme. 

These cutting-edge cryptographic tools are 
meticulously engineered to overcome the limitations of 
traditional encryption. Their design enables 

computations to be executed directly on the encrypted 
data itself, and where necessary, they enforce highly 
granular, fine-tuned access controls that restrict 
decryption capabilities to only specific functions or 
authorized individuals. 

Conventional cloud-based computation and storage 
paradigms, relying on contemporary cryptographic 
methods, necessitate the decryption of customer data 
prior to any processing or analytical operations. 
Consequently, data privacy relies heavily on the 
enforcement of security policies designed to prevent 
unauthorized access to the decrypted information. In 
this model, Cloud Service Consumers (CSCs) are 
compelled to place trust in the Access Control Policies 
(ACPs) implemented and maintained by their chosen 
Cloud Service Providers (CSPs) for safeguarding data 
privacy (Figure 1). In contrast, the adoption of FHE 
enables data privacy to be cryptographically enforced 
by the CSC, leveraging rigorous mathematical security 
proofs. This paradigm shift ensures that the CSP, 
lacking the requisite Secret Key (SK), will not have 
access to unencrypted customer data, either during 
storage or computation. 

Fully Homomorphic Encryption (FHE) is the most 
comprehensive cryptographic solution, enabling the 
direct execution of arbitrary computations (any 
function) on ciphertexts. Introduced by Gentry in 2009 
[14], FHE fundamentally enables data owners to use 
untrusted cloud services for analysis without exposing 
their data in plaintext [15-23]. FHE can be classified 
as word-wise [24-27] and bit-wise [28, 29] schemes as 
per the supported operations. FHE enables arbitrary 
computations to be performed on encrypted data 
without decryption, utilizing three keys: the public key 
(PK), the secret key (SK), and the evaluation key 
(EK). The public key can be used to encrypt data. 
The secret key can be used to decrypt data. The 
evaluation key can be used to evaluate circuits on 
encrypted data. It is typically generated from the secret 
key but can also be generated from the combination of 
the public and secret keys. 

Despite its comprehensive capabilities, general FHE 
schemes still face challenges related to high 
computational overhead and large ciphertext sizes. To 
address these performance issues, the Cheon-Kim-
Kim-Song (CKKS) scheme [30] was developed as a 
specialized variant of FHE in 2017. CKKS is uniquely 
designed for approximate arithmetic on real and 
complex numbers, making it highly suitable for 
numerical analysis, machine learning, and statistical 
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tasks. It supports efficient homomorphic operations on 
encrypted fixed-point data, which is essential because 
tax calculations often involve percentages and marginal 
rates, requiring non-integer arithmetic. CKKS 
significantly improves efficiency, offering faster 
operation times and enabling batching (Single 
Instruction Multiple Data (SIMD) operations) to process 
multiple tax records simultaneously. CKKS is a set of 
probabilistic polynomial-time algorithms regarding the 
security parameter. 

The algorithms are: 

CKKS.KeyGen: generates a key pair. 

CKKS.Enc: encrypts a plaintext. 

CKKS.Dec: decrypts a ciphertext. 

CKKS.Eval: evaluates an arithmetic operation on 
ciphertexts (encrypted data). 

While its efficiency stems from its approximate 
nature—introducing a small, controlled margin of 
error—this trade-off is often acceptable for the massive 
performance gains it delivers in practical, large-scale 
tax data processing. The practical application of CKKS 
to tax analysis involves tasks such as calculating an 
encrypted tax liability (T) based on an encrypted 
income value (I) and a fixed tax rate (R). The 
regulatory body can perform the homomorphic 
multiplication C(T) = Hom.Mult(C(I), R) on an 
untrusted server, and the result is only revealed 
when decrypted by the user or a trusted party using 
the secret key. This approach enables complex 
analyses (e.g., audits or aggregated statistics) to be 
performed without ever exposing sensitive individual 
financial data. 

3. RELATED WORK 

The vulnerability of data during the computation 
phase, especially when tax agencies outsource data 
processing and storage to cloud providers, remains a 
significant security concern. As noted by [14], 
inadequate cryptographic boundaries often necessitate 
the decryption of sensitive data for analysis, creating a 
critical vulnerability. In the tax context, once decrypted, 
data containing personal identifiers, income details, 
investment information, or audit histories becomes 
virtually unprotected. If intercepted or leaked during 
processing, this information could be used to fuel 
identity theft, targeted phishing scams, financial fraud, 
or tax refund fraud. The threat landscape encompasses 

not only external attackers but also insider threats, 
such as malicious cloud employees, misconfigured 
access controls, and accidental data leaks. The 
complexity of legal regimes for data crossing agencies 
or borders further complicates control. Ultimately, the 
fear of electronic filing leading to long-term financial 
pain quickly erodes taxpayer trust. 

The shift towards online storage and cloud 
computing by tax authorities has dramatically 
escalated the risk of sensitive data breaches, misuse, 
and re-identification [31]. emphasized that traditional 
anonymization methods are no longer sufficient 
because sophisticated attackers can leverage out-of-
band data sources such as leaked databases, public 
records, or social media to link anonymized tax data 
back to individual taxpayers. Tax datasets are 
particularly vulnerable due to the inclusion of quasi-
identifiers, such as ZIP codes, income levels, and filing 
status, which, once de-anonymized, can reveal highly 
personal information, including employment history and 
medical deductions. Furthermore, the reliance on cloud 
providers introduces additional challenges, including 
the cloud provider’s potential superior access to 
unsecured metadata, logs, or residual data, as well 
as the complication of foreign law enforcement 
obligations, which raises issues of compliance and 
sovereignty. The overall lack of end-to-end 
confidentiality in the analytic pipeline exposes tax 
agencies to regulatory noncompliance, reputational 
loss, and civil action. Fully Homomorphic Encryption 
(FHE) schemes, such as CKKS [30], directly address 
the issue of data exposure during computation by 
enabling calculations to be performed directly on 
encrypted data, eliminating the need for decryption. 
Similarly, Functional Encryption (FE) [32], specifically 
Inner Product Functional Encryption (IPFE) [33], 
provides a mechanism for selective disclosure, where 
only specific results (e.g., total tax owed) are revealed 
while the underlying private data (e.g., income and 
deductions) remain encrypted. Beyond computation, 
the long-term storage of tax data in inadequately 
secured databases poses significant risks, as tragically 
demonstrated by the 2017 Equifax breach [7]. Best 
practices to mitigate this include encrypting stored 
data, limiting retention periods, and using role-based 
access control. Cryptographic methods, such as Zero-
Knowledge Proofs (ZKPs) [34] and Secure Multiparty 
Computation (SMPC) [35], also provide novel 
mechanisms for validating taxpayer information or 
conducting audits without revealing the raw data itself. 
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Figure 2: This model outlines the process of online tax 
encryption, wherein sensitive financial data is initially 
secured using either Fully Homomorphic Encryption (FHE) 
or Multiparty Computation (MPC). The resultant ciphertext is 
submitted to a cloud provider for secure processing (secure 
computation). Upon completion, the user receives the 
encrypted results and performs the final, local decryption to 
retrieve the plaintext tax amount. 

The integration of tax data analytics into Secure 
Multiparty Computation (MPC)1 represents a significant 

                                            

1MPC is a subfield of cryptography that enables multiple parties to jointly 
compute a function over their private inputs without revealing those inputs 
to each other or a third party [36, 37]. Essentially, it allows for analysis on 
sensitive, decentralized data while the data itself remains encrypted or secret-
shared among the participants.  

stride in privacy-preserving data analysis. A seminal 
effort by [38] pioneered this field by securely merging 
over 10 million Estonian tax records with roughly half a 
million education records. Their goal was to analyze 
the effect of student employment on graduation 
timelines. Utilizing the Sharemind MPC platform, which 
implements cryptographic protocols such as secret 
sharing to distribute data among non-colluding servers, 
they ensured the cryptographic protection of individual-
level data throughout the computation. Each server 
holds only a share of the data, which is meaningless in 
isolation, thus preventing any single entity from learning 
the sensitive information. Crucially, their study 
demonstrated that MPC provided better utility 
compared to traditional anonymization methods, such 
as differential privacy or aggregation, which often 
distorted or even eliminated large segments of the 
original dataset to achieve a privacy guarantee. This 
work provided concrete evidence that MPC can offer 
robust privacy without compromising analytical 
correctness, thereby paving the way for its application in 
large-scale, real-world tax applications. 

CKKS Fully Homomorphic Encryption (FHE) offers 
a compelling justification over Secure Multiparty 
Computation (MPC) for many advanced analytical 
tasks by providing superior computational efficiency 
and a simpler deployment trust model. Unlike MPC, 
which requires frequent, high-volume network 
communication between multiple non-colluding servers 
for every step, CKKS performs the entire computation 
on a single, untrusted server that operates exclusively 
on encrypted data, thereby dramatically reducing 
communication overhead and improving scalability, 
which is crucial for large-scale statistical analysis and 
machine learning. 

Furthermore, CKKS is inherently optimized for 
approximate arithmetic over real and complex 

 
Figure 1: The image contrasts two approaches: the traditional cloud model (left) requires decrypting sensitive data before 
any computation can occur, whereas the FHE cloud model (right) enables computations to be performed directly on 
encrypted data, significantly enhancing privacy. 
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numbers, making it analytically superior for modern 
algorithms like neural networks, whereas MPC is 
fundamentally based on less-flexible integer arithmetic; 
finally, the deployment of CKKS avoids the significant 
logistical challenge of securing and coordinating a 
network of multiple, independently audited MPC 
parties. 

Complementary efforts have focused on 
modernizing data access through the use of synthetic 
data and privacy-preserving design [39]. detailed 
initiatives by the Internal Revenue Service (IRS) and 
the Tax Policy Center to address the classic trade-off 
between utility and privacy. Their innovative approach 
involves combining a fully synthetic tax data set with a 
secure validation server. This setup allows researchers 
to confirm their findings against the real, confidential 
source data without ever directly viewing it. The 
resulting public-use file statistically represents the 
underlying universe, yet prevents any actual disclosure 
of individual tax returns. While the authors emphasized 
the difficulties they overcame in designing the model, 
controlling for bias, and ensuring transparency, they 
ultimately concluded that synthetic data systems hold 
the key to providing broader, pivotal access to sensitive 
tax data in a privacy-conscious manner. 

A separate thread of research has explored the 
application of Differential Privacy (DP)2 [44-46] to 
administrative tax and survey data [47]. conducted a 
feasibility study on using DP for summary statistics and 
regression analyses. They found that while DP 
methods are effective in protecting privacy for basic 
outputs, such as means or counts, the extraordinarily 
high levels of noise induced during complex analyses, 
like regression analyses, often render the results so 
degraded as to have minimal practical use. The study 
highlighted that contextual factors, including sample 
size, data sparsity, and model complexity, significantly 
impact the efficacy of DP, as more complex or sparse 
data requires a greater injection of noise to maintain 
the same privacy guarantee (ϵ). These findings 
highlight significant limitations in applying pure DP to 
complex, high-dimensional, and policy-relevant tax 
analyses, underscoring an urgent need for hybrid 
privacy methods that can ensure both confidentiality 
and analytic validity. 
                                            

2DP is a rigorous, mathematical definition of privacy that ensures the outcome 
of an analysis is virtually the same whether any single individual’s data is 
included or excluded from the dataset. It achieves this guarantee by 
strategically introducing a controlled amount of random noise to the 
computation or the output [40-43]. This noise masks the presence or absence 
of any individual’s record, thereby preventing an attacker from inferring 
sensitive personal information by comparing analysis results. 

The notion that CKKS Fully Homomorphic 
Encryption (FHE) inherently provides Differential 
Privacy (DP) is a compelling idea, although it is not 
strictly true without careful parameter tuning. CKKS is 
an approximate FHE scheme, meaning it naturally 
incorporates and accumulates noise during 
homomorphic computations to ensure its cryptographic 
security (based on the Ring-LWE problem). This noise, 
which is typically sampled from a Gaussian distribution, 
grows predictably with each arithmetic operation. 
However, a critical limitation is that the magnitude of 
this cryptographic noise can sometimes be dependent 
on the plaintext data itself, which can compromise the 
stringent, input-independent privacy guarantee required 
by standard DP, often necessitating the addition of 
extra noise to achieve the DP goal formally. 

The native noise inherent in the CKKS scheme, 
although present, is not intentionally calibrated to 
satisfy the requirements of DP. The accumulated 
Gaussian noise that naturally arises during CKKS 
homomorphic operations is primarily a function of the 
data’s scale and the chosen cryptographic parameters, 
and is therefore data-dependent. Achieving a formal, 
quantifiable DP guarantee (ϵ) on the final output 
requires an additional, carefully designed mechanism 
of noise injection. This deliberate noise must be added 
post-computation and calibrated independently to the 
sensitivity of the final query, ensuring that the 
necessary privacy budget is met, regardless of the 
underlying CKKS noise, which cannot be reliably 
leveraged to provide DP “for free.” 

Addressing the need for more efficient and secure 
cryptographic solutions, [48] discussed the design of an 
efficient and secure inner-product predicate encryption 
(IPE)3 system. Specifically, IPE works by checking if 
the inner product of two vectors—one embedded in the 
secret key and one in the ciphertext—equals zero (or 
some other specific relationship). This allows for 
expressive, fine-grained access control; for instance, a 
key could be programmed to decrypt tax records (the 
ciphertext) only when the vector of attributes (e.g., 
income bracket, location, filing status) satisfies a 
complex, multidimensional query defined by the key’s 
inner product vector. Traditional PE often suffers from a 
trade-off between privacy and performance, with early 

                                            

3Inner-Product Predicate Encryption is a form of Predicate Encryption (PE), a 
type of Public-Key Encryption where the decryption key is associated with an 
access policy (a predicate) and the ciphertext is associated with an attribute 
value. [49] Decryption is only possible if the ciphertext’s attribute value 
satisfies the key’s predicate. 
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IPE systems exhibiting limited practicality for real-time 
or large-scale deployment due to high decryption costs 
and large key and ciphertext sizes. The authors’ goal 
was to make IPE faster and more practical for real-
world use without sacrificing its cryptographic security, 
a key requirement for modern, large-scale tax systems. 

CKKS Fully Homomorphic Encryption (FHE) is 
superior to Inner-Product Predicate Encryption (IPE) 
for complex analytical tasks because CKKS enables 
arbitrary computation, including additions and 
multiplications over real and complex numbers, to be 
performed directly on encrypted data. This is 
essential for statistical models and machine learning. 
Conversely, IPE is fundamentally an access control 
mechanism that only allows users to decrypt data if 
their secret key’s attributes match the ciphertext’s 
attributes via an inner-product check, not a general-
purpose tool for running algorithms on the encrypted 
data itself. 

Therefore, when the requirement is to analyze the 
data privately, CKKS is the necessary cryptographic 
tool. 

zkTax [50] represents a practical and privacy-
preserving advancement built on advanced 
cryptographic concepts. It utilizes zk-SNARKs (Succinct 
Non-interactive Arguments of Knowledge), a highly 
efficient class of Zero-Knowledge Proofs (ZKPs).4 The 
zkTax system maintains completeness (valid 
statements produce valid proofs) and soundness 
(invalid statements cannot generate valid proofs) while 
preserving zero knowledge—meaning no additional 
data is leaked beyond the disclosed claim. zkTax’s 
core impact stems from its pragmatic implementation, 
as it is designed to integrate smoothly with existing tax 
workflows (e.g., IRS Form 1040 in the U.S.) with 
minimal infrastructural demands. The creators 
demonstrated its utility in real-world scenarios, 
including tenant income verification, public benefit 
qualification, and small business auditing, positioning it 
as a key reference for future research in secure digital 
compliance across taxation, healthcare, finance, and 
identity verification. 

                                            

4Zero-Knowledge Proofs allow one party (the prover) to cryptographically 
convince another party (the verifier) that a specific statement is true without 
revealing any information beyond the validity of the statement itself. Zk- 
SNARKs take this concept further by producing proofs that are succinct 
(extremely small) and non-interactive (requiring only a single message from 
the prover to the verifier, or a one-time setup), leading to compact proofs and 
fast verification [51]. 

CKKS Fully Homomorphic Encryption (FHE) is 
justified over zk-SNARKs when the objective is to 
perform arbitrary, complex computations on large, 
encrypted tax datasets, especially involving real or 
complex numbers. CKKS is a computational scheme 
that enables an untrusted server to execute full 
algorithms, such as regression or machine learning 
models, directly on encrypted data, leveraging its 
native support for approximate floating-point arithmetic. 
In contrast, zk-SNARKs are a verifiability tool used to 
prove the truth of a specific, discrete statement about 
secret data, requiring computations to be compiled 
into complex integer-based arithmetic circuits, which is 
far less practical and efficient for performing general, 
data-intensive statistical analysis. 

Finally, libraries supporting these complex 
cryptographic schemes are evolving. PyFHE [52] is a 
Python-native library developed by Zama, focusing on 
Fully Homomorphic Encryption (FHE) at the gate level. 
It enables the encryption, bootstrapping, and evaluation 
of Boolean circuits, making it ideal for research and 
experimentation in secure computation protocols that 
require binary operations and circuit-level control. 
Unlike libraries like Pyfhel [53], which focus on high-
level arithmetic, PyFHE operates on binary gates 

 
Figure 3: This schematic illustrates the CKKS-FHE workflow 
for privacy-preserving tax analytics. Users generate their 
Secret, Public, and Evaluation Keys. The Evaluation Key is 
shared with the Tax Authority (cloud server), which 
computes encrypted tax analytics on user data, encrypted via 
the Public Key. Users then decrypt the resulting tax 
credit/debit locally using their Secret Key, ensuring end-to-
end data confidentiality. 
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(AND, OR, XOR), aligning with low-level FHE 
implementations such as TFHE. Although its pure 
Python architecture results in slower performance 
compared to compiled libraries, it increases 
accessibility, educational use, and ease of modification 
for research, making it particularly useful when 
complete control over the FHE pipeline—such as 
benchmarking custom circuits or testing novel 
bootstrapping techniques—is required. 

4. PROPOSED SOLUTION 

This solution proposes establishing a specialized,  
privacy-preserving computation environment 
meticulously configured to support encrypted tax 
evaluation workflows utilizing Fully Homomorphic 
Encryption (FHE). The initial environment setup is a 
crucial step, ensuring that all necessary tools, libraries, 
and dependencies are correctly installed to guarantee 
the reproducibility, correctness, and performance of the 
entire encrypted computation pipeline. The core of this 
implementation relies on PyFHE [52], a Python-based 
cryptographic library that furnishes robust support for 
the CKKS homomorphic encryption scheme. CKKS is 
particularly well-suited for financial computations, such 
as tax processing, because it permits approximate 
arithmetic operations directly on encrypted floating-
point data. Using this established environment, 
individual users gain the ability to locally encrypt their 
sensitive financial information—including income, 
deductions, and tax credits—before transmitting it to 
a semi-trusted computation host, such as a cloud 
server. These encrypted inputs are then processed by 
the host using FHE to accurately calculate complex 
values, such as Adjusted Gross Income or the taxes 
owed, all without ever needing to decrypt and expose 
the underlying sensitive data to the computation 
provider. This ensures a high degree of confiden-
tiality throughout the entire tax analysis process. 

All computational experiments are designed to be 
conducted within Jupyter Notebooks [54]. This choice 
provides an exceptionally flexible and interactive 
interface, seamlessly integrating documentation, 
executable code, and resulting output into a single, 
shareable environment. Within this framework, it is 
possible to trace and visualize encrypted inputs, 
intermediate ciphertexts, and final decrypted outputs 
in a step-by-step manner. Jupyter serves as a 
valuable platform for not only debugging and 
validation but also for demonstrating the correctness 
and providing pedagogical explanations of the complex 
homomorphic operations being applied. 

While PyFHE is the primary implementation library, 
drawing directly from the efficient approximate 
homomorphic encryption scheme introduced by [30] in 
their seminal CKKS paper, other popular FHE 
frameworks were also considered. These include 
libraries like Microsoft SEAL (C++) [55], PALISADE 
(C++) [56], and Concrete [57] by Zama (Rust and 
Python bindings), which offer different languages, 
optimization strategies, and support for alternative 
encryption schemes (e.g., BFV [58, 59] and BGV [60]). 
PyFHE was selected for its accessible Pythonic 
interface, which allows for practical experimentation 
with CKKS without requiring a deep, low-level 
cryptographic background. This entire setup is 
designed to facilitate the reproducible, secure, and 
transparent evaluation of encrypted tax workflows, 
serving both as a robust research framework and a 
practical pedagogical tool. 

For validation and testing, synthetic taxpayer data 
was generated to accurately simulate a wide variety of 
realistic tax scenarios. This simulated data 
encompassed different filing statuses, income levels, 
and deduction types. Key input variables included 
Gross income, Filing status, Number of dependents, 
Deductible expenses, and Withholdings. Before any 
computation, all these inputs are encrypted using FHE, 
where a public/private key pair is first generated. This 
enables single-party encrypted computation, ensuring 
that the encrypted inputs are used directly throughout 
the simulation without any intermediate decryption, 
thereby maintaining the confidentiality of all 
intermediate results and outcomes. The simulation 
process is broken down into a structured, five-step 
workflow: 

• Model Encoding: The specific tax formulas for 
the DMV (District of Columbia (D.C.), Maryland 
(MD), and Virginia (VA)) must be accurately 
encoded into logic that is fully compatible with 
the chosen CKKS encryption scheme. 

• Data Encryption: All synthetic taxpayer data is 
encrypted using the generated public key. 

• Encrypted Computation: The complex tax 
calculations are performed entirely on the 
encrypted inputs, without the computation host 
ever accessing the plaintext data. 

• Decryption and Validation: The final encrypted 
outputs, such as the calculated tax owed or 
refund amount, are decrypted and validated. 
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These results are then critically compared 
against known plaintext baselines, which are 
generated by traditional tax software, to assess 
the computation’s accuracy (correctness) 
rigorously. 

• Performance Analysis: To evaluate the solution’s 
scalability and practical viability, key metrics, 
including execution time, memory usage, and 
computational overhead, are systematically 
recorded and analyzed. 

The CKKS scheme supports compliant auditing and 
evidentiary integrity by fundamentally altering the point 
at which data is exposed. It enables authorities to 
execute complex analytical workflows and auditing 
rules directly on the encrypted financial data 
(ciphertexts) without requiring a decryption step within 
the processing environment. This robust homomorphic 
computation guarantees that the final encrypted tax 
outcome is a cryptographically verifiable result of 
applying a specific, verifiable set of rules (the tax code) 
to the original encrypted inputs. Consequently, the 
submitted evidence (the encrypted filing) remains 
secure and untampered throughout the entire pipeline, 
and the computational process can be audited for 
correctness without compromising confidentiality. This 
capability is essential for achieving zero-trust 
compliance because it removes the need to trust the 
processing environment with cleartext data, thereby 
preserving evidentiary integrity throughout the 
automated review process. 

The success and trustworthiness of this privacy-
preserving solution are evaluated using a 
comprehensive set of metrics. These metrics include 
ensuring correctness by matching homomorphic 
computation results with those from traditional tax 
software, guaranteeing confidentiality by verifying that 
no intermediate values leak sensitive taxpayer 
information, and measuring efficiency through total 
runtime and resource usage across varying input sizes 
and encryption complexities. Furthermore, we establish 
jurisdictional fidelity by confirming that the encrypted 
pipeline strictly complies with the 2024–2025 tax code 
for each specified jurisdiction (MD, VA, and D.C.), 
thereby validating the real-world applicability and legal 
adherence of the homomorphically computed results. 

5. EXPERIMENTAL RESULTS 

The project successfully demonstrated the 
effectiveness of applying homomorphic encryption for 

secure tax analysis, specifically utilizing the CKKS 
(Cheon-Kim-Kim-Song) scheme to compute tax 
liabilities on encrypted taxpayer data. The core 
implementation involves a comprehensive 
homomorphic encryption pipeline where sensitive 
taxpayer inputs—including gross income, as well as 
federal, state, and local tax rates—are encrypted prior 
to any computation. The necessary arithmetic 
operations, such as multiplication, addition, and 
subtraction, which simulate the entire tax calculation 
process, are executed entirely within the encrypted 
domain. 

A key privacy feature of this approach is that only 
the final output (the amount owed or the refund due) is 
decrypted, guaranteeing end-to-end privacy for the 
taxpayer’s financial information. To thoroughly evaluate 
the robustness and accuracy of the encrypted 
calculations, a set of synthetic test profiles was created 
to simulate real-world diversity. These profiles mirrored 
the distinct regional tax rules and deduction patterns 
found across Maryland, Washington, D.C., and 
Virginia. For each state, we designed three sample 
employees, strategically assigning them varying 
income levels and types of deductions. The objective 
was to create a comprehensive test suite where one 
employee would owe taxes, a second would receive 
a refund, and a third would land on a final tax balance 
of precisely zero. This was achieved by carefully 
adjusting the income and deductions to ensure the 
individuals interacted differently with available tax 
brackets and credits. 

 
Figure 4: Ciphertexts generated using Fully Homomorphic 
Encryption (FHE) schemes are represented as high-degree 
polynomials over a specified ring. 
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Figure 5: Comparison of final tax amounts computed in 
plaintext versus via the CKKS homomorphic-encryption 
pipeline, and their differences. Plaintext values were 
obtained by subtracting all deductions (standard deduction, 
retirement, and student loan) from gross income and then 
applying D.C. tax rates (22% federal, 8.5% state, 0% local). 
The encrypted pipeline encoded and encrypted the same 
inputs, performed all arithmetic operations (deduction 
subtraction, rate multiplication, and summation of tax 
components) directly on ciphertexts, and finally decrypted 
the result. The “Difference” column shows the plaintext result 
minus the decrypted encrypted result, effectively zero, 
demonstrating that homomorphic evaluation reproduces 
exact tax amounts within CKKS’s approximation bounds. 

All tax calculations across these test cases were 
performed exclusively on the encrypted data using the 
CKKS scheme. Upon decryption, the final results 
consistently and closely matched the expected 
outcomes computed in plaintext. As shown in Figure 5, 
the homomorphic evaluation successfully reproduced 
the exact tax amounts, with only a minute margin of 
error attributable to the inherent floating-point 
approximations of the CKKS scheme. For instance, 
the Washington 

The D.C. test group provided clear validation: the 
low-income employee with significant education-related 
deductions received a refund, the mid-income 
individual with standard deductions resulted in a zero 
tax balance, and the high-income earner with fewer 
deductions owed taxes. This exact pattern was 
successfully replicated in both the Maryland and 
Virginia groups, demonstrating that the encrypted 
pipeline can correctly process a variety of complex tax 
scenarios while upholding user privacy and delivering 
accurate, usable outputs. 

Further research explored the application of 
privacy-preserving tax analytics using the TenSEAL 
library [61], which is optimized for homomorphic 
encryption and ensures data confidentiality during 
computation. This implementation included a separate 
dataset featuring three individuals: Alice, Bob, and 
Charlie, each with distinct income and deduction 
profiles. Their incomes and deductions were encrypted 
before any tax calculations were initiated. The federal, 
state, and local tax rates (set at 15%, 10%, and 5% 
respectively) were applied to the encrypted income, 
followed by the subtraction of deductions to determine 

the final tax return for each person. The inherent use 
of encryption ensured the sensitive financial data 
remained fully private throughout the process. The 
process of calculating the encrypted tax returns is 
illustrated in the accompanying visualizations (Figure 
6). The final computed tax returns were then decrypted 
to reveal the tax balance. This phase successfully 
confirmed that, despite all computations being hidden, 
the system correctly processed the data: Alice 
received a positive tax return, Bob’s higher income 
resulted in a larger positive return, and Charlie’s lower 
income combined with high deductions led to a 
negative tax balance (a refund). This detailed 
experiment confirms that privacy-preserving 
techniques, particularly homomorphic encryption, can 
be practically applied to sensitive financial calculations, 
making them highly suitable for applications where data 
confidentiality is paramount. 

6. DISCUSSION 

This work successfully demonstrates the feasibility 
of a fully privacy-preserving tax computation utilizing 
the CKKS fully homomorphic encryption (FHE) scheme 
for core arithmetic operations. We confirmed that 
CKKS can accurately support approximate arithmetic 
over real-valued financial inputs without exposing 
sensitive taxpayer data. The results for our encrypted 
tax calculation closely matched the corresponding 
plaintext baseline—with a negligible discrepancy 
(error <	
   0.1%)—validating the suitability of CKKS for 
high-precision tax arithmetic. Significantly, these 
findings extend previous work on homomorphic 
evaluations of statistical models by proving that even 
conditionally executed logic (e.g., classifying a taxpayer 
as receiving a refund or owing) can be managed 
correctly by decrypting only the final decision values. 

Despite encouraging accuracy, several limitations 
persist. The primary concern is the current prototype’s 
runtime, which, at approximately one second per 
taxpayer on a standard workstation, may be prohibitive 
at national scales. Achieving practical throughput will 
require further optimizations, specifically parameter 
tuning for the CKKS scheme, leveraging ciphertext 
batching to process multiple data points 
simultaneously, and implementing GPU-accelerated 
arithmetic. Secondly, our evaluation relied on a 
synthetic dataset. While representative, this dataset 
may not capture the full variability of real-world tax 
data, such as intricate deductions or non-linear 
incentives. Ultimately, future development should 
consider integrating explainable models or privacy-
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preserving feature attribution to enhance transparency 
for both taxpayers and auditors. 

Beyond the technical challenges of data handling, 
the national-scale deployment of FHE for tax analysis 
necessitates a thorough assessment of its economic 
and environmental costs. FHE operations are 
computationally intensive, leading to significantly higher 
execution times and resource consumption compared 
to cleartext processing. At a national level, encrypting, 
processing, and auditing millions of tax filings using 
CKKS would require an exponentially larger computing 
infrastructure, resulting in a direct increase in capital 
expenditure for hardware (high-performance servers 
and specialized FHE accelerators) and a significant 
rise in operational expenditure for energy consumption. 
This heightened energy demand raises critical 
concerns about environmental sustainability, making 
the carbon footprint of FHE a relevant policy 
consideration. 

While FHE offers unparalleled privacy, its 
implementation requires a strategic economic model 
that either leverages accelerator technologies (e.g., 
FPGAs or custom ASICs) to boost performance and 
energy efficiency or utilizes robust, privacy-preserving 
parallel processing architectures to distribute the 
immense computational load efficiently across the 
national infrastructure. The trade-off between absolute 
data privacy and the substantial economic and 
environmental investment required for national-scale 
deployment is a key area for ongoing research and 
policy discussion. 

The practical realization of a privacy-preserving tax 
analysis system using FHE, such as CKKS, hinges 
critically on the preprocessing and encoding pipeline for 
real-world tax data. Unlike clean, theoretical datasets, 
actual tax filings present significant challenges, 
including unstructured attachments (e.g., scanned 

receipts, PDF documents), manual amendments filed 
post-submission, and the complexity of multi-year 
filings that require historical data coherence. A robust 
preprocessing layer is mandatory to parse, 
standardize, and extract structured numerical 
information from these varied sources. This involves 
advanced techniques, such as Optical Character 
Recognition (OCR) and Natural Language Processing 
(NLP), to convert unstructured text into a standardized 
data schema suitable for FHE. Once structured, the 
numerical data must be carefully encoded into the 
plaintext slots of the CKKS scheme’s polynomial 
structure. This encoding process requires balancing 
the precision of financial values (e.g., using fixed-point 
representation for dollar amounts) against the 
multiplicative depth and noise budget limitations of the 
FHE ciphertexts. Effectively managing this conversion 
is essential to ensure that the encrypted computations 
maintain sufficient accuracy for tax calculations while 
accommodating complex scenarios, such as carrying 
forward losses or integrating amended filings, which 
introduce a new dimension of data lineage and 
dependency that must be preserved under encryption. 

Future research will concentrate on four key areas. 

• First, we must focus on performance tuning and 
scaling by implementing optimized CKKS 
parameter sets, exploiting batching and 
parallelism, and benchmarking on larger clusters 
to support bulk processing. 

• Second, we need to integrate rich tax logic, 
extending the encrypted pipeline to handle real-
world tax code complexities—including 
refundable credits, phase-outs, and non-linear 
thresholds—while maintaining accuracy. 

• Third, exploration into advanced risk models is 
necessary, integrating more expressive machine 

 
Figure 6: This Jupyter Notebook implementation, leveraging the TenSEAL library, illustrates a privacy-preserving tax 
calculation model. It applies distinct state and local tax rates for D.C., MD, and VA by executing the complete computation 
homomorphically on the ciphertexts, ensuring the data remains encrypted throughout the process. 
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learning techniques (e.g., kernel methods, tree 
ensembles) under encryption or via hybrid 
secure protocols, and rigorously evaluating their 
privacy–utility trade-offs. 

• Lastly, we must conduct regulatory and usability 
studies to assess the legal frameworks and user 
acceptance factors crucial for deployment by tax 
authorities, including managing key 
management, auditability, and developing end-
user interfaces. 

Our framework offers compelling advantages for 
secure tax analysis. It ensures zero data exposure; 
even the tax system provider cannot see user 
information, effectively eliminating insider threats and 
data breaches. The design supports audits and 
compliance without compromising privacy and is built 
to be scalable for federal and state-level adoption. 
Ultimately, this capability helps build public trust in 
digital taxation systems. Overall, these results strongly 
suggest that FHE can form a practical foundation for 
secure digital tax systems, enabling authorities to 
perform critical compliance and risk assessments 
without ever accessing raw personal data. This work 
establishes the foundation for next-generation tax 
platforms that successfully balance strong privacy 
guarantees with the accuracy and transparency 
essential for public confidence. 

7. CONCLUSION 

We successfully designed and validated a fully 
encrypted pipeline for both sophisticated tax calculation 
and preliminary risk assessment. This system leverages 
advanced cryptographic techniques to ensure that 
complex financial computations can be executed 
without ever decrypting the underlying data. The 
demonstrated solution achieves near-perfect fidelity to 
plaintext calculations, exhibiting an error rate of less 
than 0.1%. Crucially, this high accuracy is maintained 
while handling sophisticated tax logic, including the 
application of progressive brackets, navigating multi-
jurisdictional rates, and processing conditional 
refunds—all of which are entirely encrypted. 

This work represents a significant step toward 
achieving accurate zero-trust tax compliance by 
ensuring that sensitive financial information is never 
exposed to the service provider or auditor during 
processing. However, this shift in trust inherently 
introduces new security and operational risks that 
require careful management and mitigation. Since the 

cryptographic security relies entirely on the client’s 
infrastructure, the system is now vulnerable to the 
compromise of secret keys, which would allow an 
attacker to decrypt all related ciphertexts. Furthermore, 
any undetected vulnerabilities in the client-side 
encryption environment (e.g., flaws in key generation or 
the implementation of the FHE library) could lead to 
systemic data leakage. Finally, the FHE model 
creates a catastrophic risk of permanent data loss if 
the decryption keys are irrevocably lost; unlike 
traditional systems, there is no centralized copy of 
the cleartext data to recover. Therefore, the successful 
national-scale deployment of this approach must be 
coupled with robust, multi-factor key management, 
secure hardware modules, and a comprehensive 
disaster recovery protocol to mitigate these critical new 
single points of failure. 

Looking ahead, our focus will shift to maximizing the 
efficiency and breadth of the system. We plan to 
dedicate substantial effort to optimizing encrypted 
arithmetic through methods such as batching, strategic 
parameter tuning, and integration with specialized 
hardware acceleration to enhance scalability and 
throughput. Furthermore, the system’s utility will be 
extended to support a wider array of real-world 
scenarios, particularly complex deductions and credits 
that are currently challenging to model 
homomorphically. A key area of innovation involves 
embedding the CKKS homomorphic encryption 
scheme directly into Support Vector Machine (SVM) 
inference. By combining this with advanced feature 
engineering, we aim to increase the accuracy of SVM-
based tax risk classification to 1.0 on encrypted data. 
Ultimately, this capability to provide secure audits, 
deliver scalable performance, and guarantee zero data 
exposure is poised to revolutionize global tax 
compliance, paving the way for governments, financial 
institutions, and service providers worldwide to 
modernize their operations. By doing so, our work not 
only fosters public trust and dramatically reduces 
breach risk but also accelerates the global transition to 
secure, robust digital taxation systems. 
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